

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

CyVerse Learning - Foundations of Open Science Skills (FOSS) Online 2020

Foundational Open Science Skills (FOSS) is a novel, camp-style training designed to prepare principal investigators and their lab teams, both new and established, to meet the growing expectations of funding agencies, publishers, and research institutions for scientific reproducibility and data accessibility.

There are no pre-requisites for FOSS, but the course will cover a lot of material in a short time. Participants who have limited computational experience should try to view the Software Carpentry Core Lessons [https://software-carpentry.org/lessons/] before attending.

[image: foss-main]

Expected outcomes:

	Become familiar with productivity software for organizing your lab group, communications, and research

	Learn how to scale out your computation from laptop to cloud and high performance computing (HPC) systems

	Learn how to manage data for open science and reproducibility

By working through an example project relevant to their interests, participants will practice open science skills using CyVerse, GitHub, R or Python, and other resources. At the end of the week, students will present a plan for how to integrate open science into their labs.

	Home

Before FOSS Starts

	Before FOSS Starts

	Pre-FOSS Setup

Key Information

	Schedule

	Instructors

	Glossary & Acronyms

Getting Started

	About FOSS

	Code of Conduct

	Open Science Introductory Activity

	Collaboration Culture and Roles

Essential Skills

	Command Line and the Unix Shell

	Basics of Linux

Reproducible Science

	Introduction to Reproducible Science

	Communication

	GitHub

	CI/CD

	Websites & Documentation

Data Management

	Data Management Overview

	FAIR Data

	Data Management Plans (DMP)

	Data Management Tools

Using CyVerse

	About CyVerse

	Accessing Data Store

	Discovery Environment - Data Management

	Discovery Environment - Data Analysis

	Discovery Environment - Tools & Apps

	Discovery Environment - VICE

Cyberinfrastructure

	Introduction to Cloud Computing

	Atmosphere

	Research Cyberinfrastructure associated with CyVerse

	Other Cyberinfrastructure Projects

Containers

	Introduction to containers

	Launching a Docker app on Atmosphere

	Introduction to Docker

	Advanced Docker

Using RStudio

	Introduction to R & RStudio

	RStudio with Version Control

GitHub Action and EHT

	GitHub Action and EHT Demo

Experimental

	GitHub Pages - a quick start

CyVerse Homepage: http://www.cyverse.org

Funding and Citations

CyVerse is funded by the National Science Foundation under
Award Numbers DBI-0735191, DBI-1265383, and DBI-1743442.

Please cite CyVerse appropriately when you make use of our resources,
CyVerse citation policy [http://www.cyverse.org/cite-cyverse]

License

Documentation contained in this repo is made available under CC BY 4.0 License: https://creativecommons.org/licenses/by/4.0/legalcode

Fix or improve this documentation

	Search for an answer:
CyVerse Learning Center

	Ask us for help:
click [image: Intercom] on the lower right-hand side of the page

	Report an issue or submit a change:
|Github Repo Link|

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Before FOSS Starts

Please endeavor to complete the pre-FOSS setup before arriving at FOSS.

FOSS runs under a Code of Conduct. Please familiarize yourself with it.

FOSS Online sessions are recorded and recordings are posted on CyVerse’s private YouTube channel for participants to review at any time (only those with the link can view).

Need help?

Couldn’t find what you were looking for?

	You can talk to any of the instructors or TAs if you need immediate help.

	Chat with us on CyVerseFOSS Slack [https://cyversefossworkspace.slack.com].

	Post an issue on the documentation issue tracker [https://github.com/CyVerse-learning-materials/foss-2019/issues] on GitHub

[image: CyverseLogo] [https://cyverse.org/] [image: LearningCenter] [http://learning.cyverse.org/]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Pre-FOSS Setup

Please set up the Prerequisite accounts and software to prepare for FOSS Online; help setting up both Prerequisites and Optional Downloads will be available during Onboarding.

	Prerequisite

	Notes

	Links

	Wi-Fi-enabled laptop

	You should be able to use any laptop (Windows/MacOS/Linux.). We strongly recommend Firefox or Chrome as your browser. It is recommended that you have administrative/install permissions on your laptop.

	
	Download FireFox [https://www.mozilla.org/en-US/firefox/new/?scene=2]

	Download Chrome [https://www.google.com/chrome/browser/]

	Zoom Account

	Please ensure that you have a CyVerse account and have verified your account by completing the verification steps in the email you got when you registered.

	Register for your Zoom account at http://www.zoom.us/.

	CyVerse Account

	Please ensure that you have a CyVerse account and have verified your account by completing the verification steps in the email you got when you registered.

	Register for your CyVerse account at http://user.cyverse.org/.

	GitHub Account

	Please ensure that you have a GitHub account if you don’t have one already

	Register for your GitHub account at https://github.com/.

	Dockerhub Account

	Please ensure that you have a Dockerhub account if you don’t have one already

	Register for your Dockerhub account at https://hub.docker.com/.

	Text Editor

	Please ensure that you have a Text Editor of your choice. Any decent Text Editor would be sufficient.
Recommended ones include SublimeText and Atom (more in Optional Downloads below)

	Register for Sublime at https://www.sublimetext.com/. Register for Atom at https://atom.io/.

	Slack for networking

	We will be using Slack extensively for communication and networking purposes, especially between online class sessions

	Register for Slack at https://slack.com/.

	ORCID ID

	If you haven’t set up an Open Researcher and Contributor ID (ORCID) yet, please consider doing so (and add it to your CyVerse account profile)

	Register for ORCID at https://orcid.org/.

Optional

Below are some other downloads that are not required for FOSS, but which provide some options for functionalities we will cover.

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Schedule

Important

Please fill out the weekly lesson feedback Google Form [https://docs.google.com/forms/d/e/1FAIpQLSenaWAujZE-_3CNGNwyt9atS42O5ZAqe20owtjR_mMvgi5HSQ/viewform?usp=sf_link]

Note: Times are shown in Arizona Time GMT-7 (same as Pacific Daylight Time until November)

	Date (Week)

	Time

	Activity (Instructor)

	Content

	Expected Outcomes

	July 28th | 30th (Week 0 - Onboarding)

	Tuesday 11:00 am | Thursday 1:00 pm

	Welcome (Swetnam)

	Overview of Code of Conduct, Course Materials, and logistics

	

	
	Tuesday 11:30 AM | Thursday 1:30 PM

	Discussion: What is Open Science? [https://youtu.be/7BXNs8HkYIo] (Merchant)

	Overview of CyVerse mission

	Understand why we teach FOSS

	
	Tuesday 12:00 PM | Thursday 2:00 PM

	Setup profile and accounts (Swetnam)

	QUBES Hub Faculty Mentoring Network [https://qubeshub.org/community/groups/cyverse_fmn], CyVerse [https://learning.cyverse.org/projects/foss-2020/en/latest/CyVerse/intro_to_cyverse.html], Slack

	Get familiar with our virtual platforms for learning and creating material

	
	Tuesday 12:30 PM | Thursday 2:30 PM

	CyVerse Walkthrough [https://learning.cyverse.org/projects/foss-2020/en/latest/CyVerse/intro_to_cyverse.html] (Cooksey)

	Navigating the Portal, Discovery Environment, Data Store, and other platforms

	Optional: Launching executable and interactive apps. Add a tool and app [https://learning.cyverse.org/projects/cyverse-foss-2020/en/latest/CyVerse/tool_integration_app_building_DE.html]

	
	
	Homework for Week 1

	Introduce yourself via QUBES Profile

	Learn about how to navigate and operate on the QUBES website

	Date (Week)

	Time

	Activity (Instructor)

	Content

	Expected Outcomes

	1

	August 11 11:00 am | August 13 1:00 pm

	Key Concepts: Communication [https://learning.cyverse.org/projects/foss-2020/en/latest/reproducible_science/communication.html] & Documentation [https://learning.cyverse.org/projects/foss-2020/en/latest/reproducible_science/websites.html] (Swetnam slides [https://gitpitch.com/tyson-swetnam/foss-2020])

	Using tools like Slack, Medium, Twitter

	Project management tools, and public relations with social media.

	
	11:45 am | 1:45 pm onward

	Breakout Sessions

	Communication & Project Management Tools

	Discuss how you can use GitHub, Websites, and Project Management Tools to empower your open-science lab

	
	
	
	
	

	
	
	
	
	

	Date (Week)

	Time

	Activity (Instructor)

	Content

	Expected Outcomes

	2

	August 25 11:00 am | August 27 1:00 pm

	Essential Skills

	Starting with key concepts of Linus command line and Git

	

	
	
	Key Concepts: Linux [https://learning.cyverse.org/projects/foss-2020/en/latest/software_essentials/linux.html] (Swetnam)

	GitPitch link [https://github.com/tyson-swetnam/foss-2020] Why Linux, Version Control, Containers

	Understanding what open source sofware means to open science

	
	13:00-14:00

	The Research Object I: Introduction to GitHub [https://learning.cyverse.org/projects/cyverse-foss-2020/en/latest/reproducible_science/GitHub.html] (Balk)

	
	a basic understanding of git [https://git-scm.com/]

	
	
	
	Optional: Command Line Refresher [https://learning.cyverse.org/projects/cyverse-foss-2020/en/latest/software_essentials/commandline.html]

	Basic navigation and file manipulation

	
	09:20-10:00

	FAIR Data Principles (Walls)

	Metadata, standards, licensing, legal, and ethics

	Be able to find standards for your data, choose a license

	Date (Week)

	Time

	Activity (Instructor)

	Content

	Expected Outcomes

	3

	September 8 11:00 am | September 10 1:00 pm

	Planning Your Open Science Lab

	Making collaboration and project management efficient

	

	Date (Week)

	Time

	Activity (Instructor)

	Content

	Expected Outcomes

	4

	September 22 11:00 am | September 24 1:00 pm

	Data Management Overview

	Organization, Sharing, Metadata

	Understand why you need data management

	
	
	Data Management Plans (Walls)

	Writing a Data Management Plan

	Learn how to write an excellent DMP!

	
	
	Data Management Tools (Walls)

	Open Science Framework, Protocols.io, CyVerse DataCommons

	Be able to work with data management tools

	Date (Week)

	Time

	Activity (Instructor)

	Content

	Expected Outcomes

	5

	October 6 11:00 am | October 8 1:00 pm

	Reproducible Research: Basics

	Turning tools into a workflow

	

	
	
	Introduction to Cloud and HPC (Swetnam)

	OpenScienceGrid, XSEDE, HPC, Commercial Services

	

	
	
	Reproducible Research I [https://learning.cyverse.org/projects/cyverse-cyverse-reproducbility-tutorial/en/latest/index.html] : Launching VMs (Williams)

	Launch a virtual machine in Atmosphere and provision it

	

	
	
	Reproducible Research II: Provisioning, GitHub and Licensing (Williams)

	
	

	Date (Week)

	Time

	Activity (Instructor)

	Content

	Expected Outcomes

	6

	October 20 11:00 am | October 22 1:00 pm

	Reproducible Research: Containers

	Developing and using your tools on any platform

	Basics of Docker, creating your own containers

	
	
	The Research Object I: Introduction to Containers [https://learning.cyverse.org/projects/cyverse-foss-2020/en/latest/Containers/introtocontainers.html] (Cooksey)

	Intro to BioContainers, Docker, Singularity, and Kubernetes

	Search for, locate, and launch a container anywhere

	
	
	Reproducible Research III: Containers and workflows

	
	

	
	
	Reproducible Research V: Build your own Containers (Williams, Swetnam)

	Basics of Docker, creating your own containers

	

	Date (Week)

	Time

	Activity (Instructor)

	Content

	Expected Outcomes

	7

	November 3 11:00 am | November 5 1:00 pm

	Reproducible Research: Continuous Integration

	Making things reliable and automated

	

	
	
	Reproducible Research IV: Computational Notebooks in CyVerse (Tuteja)

	Connecting your work in CyVerse VICE

	Learn to create a VICE app

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Instructors

Amanda Cooksey [https://cyverse.org/Amanda-Cooksey], Science Informatician, CyVerse | amcooksey@cyverse.org

Eric Lyons [https://datascience.arizona.edu/person/eric-lyons], CyVerse Co-PI and UA Science Lead | ericlyons@email.arizona.edu

Nirav Merchant [https://datascience.arizona.edu/person/nirav-merchant], Data Science Director | nirav@email.arizona.edu

Tyson Swetnam [https://tyson-swetnam.github.io/], Research Assistant Professor, University of Arizona | tswetnam@cyverse.org

Reetu Tujeta [https://cyverse.org/Reetu-Tujeta], Science Informatician, CyVerse | reetututeja@cyverse.org

Jason Williams [https://jasonjwilliamsny.github.io/profile/], Training Lead, Cold Spring Harbor Laboratory | williams@cshl.edu

CyVerse Staff

Shelley Littin Coordinator, Marketing & Communications | littin@cyverse.org

Tina Lee, User Engagement Officer | tinal@cyverse.org

Mary Margaret Sprinkle, Assistant Director Finance & Management | marys@cyverse.org

Mariah Wall, User Interface and Application Developer | mgwall@cyverse.org

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Glossary & Acronyms

A

	action: automate a workflow in the context of CI/CD, see GitHub Actions [https://github.com/features/actions]

	agile: development methodology [https://en.wikipedia.org/wiki/Agile_software_development] for organizing a team to complete tasks organized over short periods called ‘sprints’

	allocation: portion of a resource assigned to a particular recipient, typical unit is a core or node hour

	Anaconda: open source data science platform. Anaconda.com [https://www.anaconda.com/]

	application: also called an ‘app’, a software designed to help the user to perform specific task

	awesome: a curated set of lists that provide insight into awesome software projects on GitHub [https://github.com/topics/awesome-list]

	AVU: Attribute-Value-Unit a components for iRODS metadata [https://docs.irods.org/4.1.9/icommands/metadata/].

B

	beta: \(\beta\), a software version which is not yet ready for publication but is being tested

	bash: Bash is the GNU Project’s shell, the Bourne-Again Shell [https://www.gnu.org/software/bash/]

	biocontainer: a community-driven project that provides the infrastructure and basic guidelines to create, manage and distribute bioinformatics packages (e.g conda) and containers (e.g docker, singularity)

	bioconda: a channel for the conda package manager specializing in bioinformatics software

C

	CLI: (1) the UNIX shell command line interface [https://en.wikipedia.org/wiki/Command-line_interface], most typically BASH (2) the CyVerse Learning Institute [https://learning.cyverse.org]

	command: a set of instructions sent to the computer, typically in a typed interface

	conda: an installation type of the Anaconda data science platform. Command line application for managing packages and environments

	container: virtualization of an operating system run within an isolated user space

	Continuous Integration: (CI) is testing automation to check that the application is not broken whenever new commits are integrated into the main branch

	Continuous Delivery: (CD) is an extension of ‘continuous integration’ to make sure that you can release new changes in a sustainable way

	Continuous Deployment: a step further than ‘continuous delivery’, every change that passes all stages of your production pipeline is released

	Continuous Development: a process for iterative software development and is an umbrella over several other processes including ‘continuous integration’, ‘continuous testing’, ‘continuous delivery’ and ‘continuous deployment’

	Continuous Testing: a process of testing and automating software development.

	CRAN: The Comprehensive R Archive Network [https://cran.r-project.org/]

	CyVerse tool: Software program that is integrated into the back end of the DE for use in DE apps

	CyVerse app: graphic interface of a tool made available for use in the DE

D

	Debian: a free OS [https://www.debian.org/], base of other Linux distributions such as Ubuntu

	Development: the environment on your computer where you write code

	DevOps Software *Dev*elopment and information techology *Op*erations techniques for shortening the time to change software in relation to CI/CD

	Discovery Environment (DE): a data science workbench for running executable, interactive, and high throughput applications in CyVerse DE [https://de.cyverse.org]

	distribution: abbreviated as ‘distro’, an operating system made from a software collection based upon the Linux kernel

	Docker: Docker [https://www.docker.com/] is an open source software platform to create, deploy and manage virtualized application containers on a common operating system (OS), with an ecosystem of allied tools. A program that runs and handles life-cycle of containers and images

	DockerHub: an official registry of docker containers, operated by Docker. DockerHub [https://hub.docker.com/]

	DOI: a digital object identifier. A persistant identifier number, managed by the doi.org [https://www.doi.org/]

	Dockerfile: a text document that contains all the commands you would normally execute manually in order to build a Docker image. Docker can build images automatically by reading the instructions from a Dockerfile

E

	environment: software that includes operating system, database system, specific tools for analysis

	entrypoint: In a Dockerfile, an ENTRYPOINT is an optional definition for the first part of the command to be run

F

	FOSS: (1) Free and Open Source Software [https://en.wikipedia.org/wiki/Free_and_open-source_software], (2) Foundational Open Science Skills [https://cyverse.org/foss] - this class!

	function: a named section of a program that performs a specific task

G

	git: a version control system software

	gitter: a Github based messaging service that uses markdown gitter.im [https://gitter.im]

	GitHub: a website for hosting git repositories – owned by Microsoft GitHub [https://github.com]

	GitLab: a website for hosting git repositories GitLab [https://gitlab.com]

	GitOps: using git framework as a means of deploying infrastructure on cloud using Kubernetes

	GPU: graphic processing unit

	GUI: graphical user interface

H

	hack: a quick job that produces what is needed, but not well

	HPC: high performance computer, for large syncronous computation

	HTC: high throughput computer, for many parallel tasks

I

	IaaS: Infrastructure as a Service [https://en.wikipedia.org/wiki/Infrastructure_as_a_service]. online services that provide APIs

	iCommands: command line application [https://docs.irods.org/master/icommands/user/] for accessing iRODS Data Store

	IDE: integrated development environment, typically a graphical interface for working with code language or packages

	instance: a single virtul machine

	image: self-contained, read-only ‘snapshot’ of your applications and packages, with all their dependencies

	iRODS: an open source integrated Rule-Oriented Data Management System, iRODS.org [https://irods.org/]

J

	Java: programming language, class-based, object-oriented

	JavaScript: programming language

	JSON: Java Script Object Notation, data interchange format that uses human-readable text

	Jupyter(Hub,Lab,Notebooks): an IDE, originally the iPythonNotebook, operates in the browser Project Jupyter [https://jupyter.org/]

K

	kernel: central component of most operating systems (OS)

	Kubernetes: an open source container orchestration platform created by Google Kubernetes [https://kubernetes.io/] is often referred to as K8s

L

	lib: a UNIX library

	linux: open source Unix-like operating system

M

	makefile: a file containing a set of directives used by a make build automation tool [https://www.gnu.org/software/make/]

	markdown: a lightweight markup language with plain text formatting syntax

	metadata:: data about data, useful for searching and querying

	multi-thread: a process which runs on more than one CPU or GPU core at the same time

	master node: responsible for deciding what runs on all of the cluster’s nodes. Can include scheduling workloads, like containerized applications, and managing the workloads’ lifecycle, scaling, and upgrades. The master also manages network and storage resources for those workloads

	Mac OS X: Apple’s popular desktop OS

N

	node: a computer, typically 1 or 2 core (with many threads) server in a cloud or HPC center

O

	ontology: formal naming and structural hierarchy used to describe data, also called a knowledge graph [https://en.wikipedia.org/wiki/Ontology_(information_science)]

	organization: a group, in the context of GitHub a place where developers contribute code to repositories

	Operating System (OS): software that manages computer hardware, software resources, and provides common services for computer programs

	Open Science Grid (OSG): national, distributed computing partnership for data-intensive research opensciencegrid.org [https://opensciencegrid.org/]

	ORCID: Open Researcher and Contributor ID (ORCiD [https://orcid.org/]), a persistent digital identifier that distinguishes you from every other researcher

P

	PaaS: Platform as a Service [https://en.wikipedia.org/wiki/Platform_as_a_service] run and manage applications in cloud without complexity of developing it yourself

	package: an app designed for a particular langauge

	package manager: a collection of software tools that automates the process of installing, upgrading, configuring, and removing computer programs for a computer’s operating system in a consistent manner

	Production: environment where users access the final code after all of the updates and testing

	Python: interpreted, high-level, general-purpose programming language Python.org [https://www.python.org/]

Q

	QUAY.io: private Docker registry QUAY.io [https://quay.io]

R

	R: data science programming language R Project [https://cran.r-project.org/]

	recipe file: a file with installation scripts used for building software such as containers, e.g. Dockerfile

	registry: a storage and content delivery system, such as that used by Docker

	remote desktop: a VM with a graphic user interface accessed via a browser

	repo(sitory): a directory structure for hosting code and data

	RST: ReStructuredText, a markdown type file

	ReadTheDocs: a web service for rendering documentation (that this website uses) readthedocs.org [https://readthedocs.org] and readthedocs.com [https://readthedocs.com/]

	root: the administrative user on a linux kernel - use your powers wisely

S

	SaaS: Software as a Service [https://en.wikipedia.org/wiki/Software_as_a_service] web based platform for using software

	schema: a metadata standard for labeling, tagging or coding for recording & cataloging information or structuring descriptive records. see schema.org [https://schema.org/]

	scrum: daily set of tasks and evalautions as part of a sprint.

	shell: is a command line interface program that runs other programs (may be complex, technical programs or very simple programs such as making a directory). These simple, stand-alone programs are called commands

	Singularity: a container software, used widely on HPC, created by SyLabs [https://sylabs.io/]

	SLACK: Searchable Log of All Conversation and Knowledge, a team communication tool slack.com [https://slack.com/]

	sprint: set period of time during which specific work has to be completed and made ready for review

	Singularity def file: (definition file) recipe for building a Singualrity container

	Stage: environment that is as similar to the production environment as can be for final testing

T

	tar: software utility for collecting many files into one archive file, often referred to as a tarball

	tensor: algebraic object that describes a linear mapping from one set of algebraic objects to another

	terminal: a windowed emulator for directly enterinc commands to a computer

	thread: a CPU process or a series of linked messages in a discussion board

	tool: In the context of CyVerse Discovery Environment, a Docker Container

	TPU: tensor processing unit

	Travis: Travis-CI [https://travis-ci.org/], a continuous integration software

U

	Ubuntu: most popular Linux OS distribution [https://ubuntu.com/], based on Debian

	UNIX: operating system

	user: the profile under which applications are started and run, root is the most powerful system administrator

V

	VICE: Visual Interactive Computing Environment [https://learning.cyverse.org/projects/vice/en/latest/] - Cyverse Data Science Workbench

	virtual machine: is a software computer that, like a physical computer, runs an operating system and applications

W

	waterfall: software development broken into linear sequential phases, similar to a Gantt chart

	webGL: JavaScript API for rendering interactive 2D and 3D graphics within any compatible web browser without the use of plug-ins

	Windows: Microsoft’s most popular desktop OS

	workspace: (vs. repo)

	worker node: A cluster typically has one or more nodes, which are the worker machines that run your containerized applications and other workloads. Each node is managed from the master, which receives updates on each node’s self-reported status.

X

	XML: Extensible Markup Language, data interchange format that uses human-readable text

Y

	YAML: YAML Ain’t Markup Language, data interchange format that uses human-readable text

Z

	ZenHub: team collaboration solution built directly into GitHub that uses kanban style boards

	Zenodo: general-purpose open-access repository developed under the European OpenAIRE program and operated by CERN

	zip: a compressed file format

	zsh: Z-Shell [https://www.zsh.org/], now the default shell on new Mac OS X

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

About FOSS

Foundational Open Science Skills (FOSS) is a novel training designed to prepare principal investigators and their lab teams, both new and established, to meet the growing expectations of funding agencies, publishers, and research institutions for scientific reproducibility and data accessibility.

This training will cover key concepts about open science:

	Collaboration culture

	Software essentials

	Using CyVerse cyberinfrastructure

	Data management

	Cloud computing

Learning Objectives

	By the end, participants should have the basic skills needed to:

	
	Work on the command line

	Write basic scripts in Python, R, and the shell

	Manage, share, and analyze data on CyVerse

	Submit and run jobs in high performance and cloud computing environments

	Communicate and collaborate on data science projects with other scientists and software developers

	Our goals are to have each participant leave with a plan for how they will set up their own data science lab to conduct open science. This master plan will include features such as:

	
	intra- and inter-lab communication and collaboration

	workflow management systems

	data management systems

	task management

	documentation

Approach

FOSS camp focuses on hands on activities – participants should learn skills by practicing them. Most of the skill taught in this course are interdepent, and lessons are designed to reinforce skills learned earlier in the week. Some material may be completely new to you, and some may be familiar. If you have experience with a subject, please help your less-experienced neighbor.

During this week, we will introduce many new tools and technologies, but these are just a sample of what is available for you to use in your own Open Science Lab. Before choosing which technologies to adopt, you should look around and see what others in your community are using. This is a case where fitting in with your peers can make you more productive. For example, if everyone you know is already on Google Chat, you may have a hard time convincing them to use Slack or Gitter, and vice versa.

We don’t expect anyone to be experts at these skills after one week. Instead, we aim to give you enough hands on experience to confidently continue with your own self-pased learning. Each lesson includes links to addtional learning materials that can enhance or expand on what you have learned at FOSS camp.

For up to one year following FOSS camp, CyVerse will provide concierge service to participants, to ensure that they are able to take full advantage of CyVerse infrastructure for their open science projects.

See the Agenda

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Code of Conduct

All attendees, speakers, sponsors and volunteers at FOSS Camp are required to agree with the following code of conduct. Organisers will enforce this code throughout the event. We expect cooperation from all participants to help ensure a safe, inclusive, and collaborative environment for everybody.

Harassment by any individual will not be tolerated and may result in the individual being removed from the Camp.

Harassment includes: offensive verbal comments related to gender, gender identity and expression, age, sexual orientation, disability, physical appearance, body size, race, ethnicity, religion, technology choices, sexual images in public spaces, deliberate intimidation, stalking, following, harassing photography or recording, sustained disruption of talks or other events, inappropriate physical contact, and unwelcome sexual attention.

Workshop staff are also subject to the anti-harassment policy. In particular, staff should not use sexualised images, activities, or other material that conflicts with the code of conduct.

Participants who are asked to stop any harassing behavior are expected to comply immediately. If a participant engages in harassing behavior, the workshop organisers may take any action they deem appropriate, including warning the offender or expulsion from the workshop with no refund.

If you are being harassed, or notice that someone else is being harassed, or have any other concerns, please contact a member of the workshop staff immediately. Workshop staff will be happy to help participants contact local law enforcement, provide escorts, or otherwise assist those experiencing harassment to feel safe for the duration of the workshop. We value your attendance.

We expect participants to follow these rules at conference and workshop venues and conference-related social events.

See http://www.ashedryden.com/blog/codes-of-conduct-101-faq or The Carpentries https://docs.carpentries.org/topic_folders/policies/code-of-conduct.html for more information on Codes of Conduct.

To see the Diversity & Inclusion information for CyVerse, visit https://cyverse.org/diversity-and-inclusion.

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Open Science Introductory Activity

Presentation: What is Open Science? [https://docs.google.com/presentation/d/18fmcWnRPu_FIVdI43N0QcNIJxmJEmRzsa9B2LQSlDns/edit]

Open Science Introductory Activity

	Introductions in pairs.

	Describe your work or research area and draw a picture of the other person’s research.

Planning your own Open Science lab

	Download a copy of the template [https://github.com/CyVerse-learning-materials/foss-2020/raw/master/getting_started/open_lab_plan.docx]

	Rename the file replacing “template” with your name.

Day 1

Question - Communication

Knowing your work style, how do you think you will be most productive in a team?

Answer

Communication [https://learning.cyverse.org/projects/cyverse-foss-2020/en/latest/reproducible_science/communication.html]

Question - Collaboration

How might you use a team charter in your work?

Answer

Create a Charter that has:

	Start and End Dates

	Project Description

	Roles and Responsibilities

	Project Justification

	List of Deliverables

	Approach

	Success Criteria

	Key Assumptions

Discussion - Project Management

Imagine you are managing a medium-sized project with collaborators in three different locations. Describe how you would use technologies like GitHub, Gitter, Slack, Wikis, or Jira to manage your project.

Hints

Version Control with GitHub [https://learning.cyverse.org/projects/cyverse-foss-2020/en/latest/reproducible_science/GitHub.html]
Documentation [https://learning.cyverse.org/projects/cyverse-foss-2020/en/latest/reproducible_science/websites.html]

Day 2

Question - Project Management

How could you combine R and GitHub to manage your project?

Answer

Using Git & RStudio [https://learning.cyverse.org/projects/cyverse-foss-2020/en/latest/software_essentials/RStudio_Git.html]

Discussion - Project Management

Describe how you could use R to make your research more reproducible. Include specific examples from a project you are working on.

Discussion - Data Management

List two specific ways (i.e. related to an actual project you are working on) in which you could use command line skills to improve your productivity.

Day 3

Question - Collaboration
 :class: admonition-question

Which CyVerse features would make collaboration easier for you?

Answer

CyVerse Features [https://learning.cyverse.org/projects/cyverse-foss-2020/en/latest/CyVerse/intro_to_cyverse.html]

Discussion - Cloud Computing

Describe a situation in which you would use cloud computing or HPC to scale your research?

How would you go about setting up the solution?

Hint

Use Free Research Cyberinfrastructure [https://learning.cyverse.org/projects/cyverse-foss-2020/en/latest/cloud_comput/xsede.html]

Day 4

Question - Data Management

How would you use the CyVerse Data Store to manage the data for a complex, distributed project?

Answer

CyVerse Data Store [https://learning.cyverse.org/projects/cyverse-foss-2020/en/latest/CyVerse/de-data-manage.html]

Question - Data Management

What is some element of a data management plan that you had not thought of before today? How would you make a plan for this element?

Answer

Data Management Overview [https://learning.cyverse.org/projects/cyverse-foss-2020/en/latest/Data_management/overview.html]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Collaboration Culture and Roles

Instructor: Michael Mandel [https://eller.arizona.edu/people/michael-mandel], Eller College of Business

Mike’s Personal Website [http://www.m2powered.com/]

Michael’s Powerpoint Presentation-Monday [https://github.com/CyVerse-learning-materials/foss-2020/blob/master/Creating_a_Collaborative_Culture_CyVerse_FOSS_Workshop_February_2020.pptx] (link to download this file)

Michael’s Powerpoint Presentation-Friday [https://github.com/CyVerse-learning-materials/foss-2020/blob/master/Creating_a_Collaborative_Culture_CyVerse_FOSS_Workshop_February_2020_Part_II.pptx] (link to download this file)

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Command Line and the Unix Shell

Setup

Launch Atmosphere Instance

	Go to https://atmo.cyverse.org/ and click ‘Projects’ at the top of the page.

	Click the ‘create new project’ button and enter a name and description.

	Click ‘images’ at the top of the screen.

	Select the image called ‘Ubuntu 18.04 GUI XFCE Base’

	Click launch.

	For this work you can leave all the settings as default and click ‘launch instance’.

Once Instance is ‘Active’

	Click on the image name ‘Ubuntu 18.04 GUI XFCE Base’ in your project.

	Click ‘Open Web Desktop’ on the bottom right corner of the screen.

	On web desktop accept ‘default config’.

Get Some Data

	Click the globe icon at the bottom of the Desktop. This will open FireFox.

	Copy this link http://swcarpentry.github.io/shell-novice/data/data-shell.zip to the FireFox search bar to download the data. Choose ‘save file’.

	To move the file to your (web) Desktop open the file manager (folder icon on Desktop). Open the downloads folder. Drag the ‘data-shell.zip’ file onto the Desktop.

	Unzip/extract the file: Right click the file and select ‘extract here’. You should end up with a new folder called ‘data-shell’ on your Desktop.

	Open a terminal by selecting the command line icon at the bottom of the desktop.

	In the terminal, type cd and hit enter.

Background

At a high level, computers do four things:

	run programs

	store data

	communicate with each other, and

	interact with us

	The graphical user interface (GUI) is the most widely used way to interact with personal computers.

	
	give instructions (to run a program, to copy a file, to create a new folder/directory) with mouse

	intuitive and very easy to learn

	scales very poorly

	The shell - a command-line interface (CLI) to make repetitive tasks automatic and fast.

	
	can take a single instruction and repeat it

Example

If we have to copy the third line of each of a thousand text files stored in thousand different folders/directories and paste it into a single file line by line.

	Using the traditional GUI approach will take several hours to do this.

	Using the shell this will only take a couple of minutes (at most).

The Shell

	The Shell is a program which runs other programs rather than doing calculations itself.

	
	programs can be as complicated as a climate modeling software

	as simple as a program that creates a new folder/directory

	simple programs used to perform stand alone tasks are usually refered to as commands.

	most popular Unix shell is Bash, (the Bourne Again SHell).

	Bash is the default shell on most modern implementations of Unix

To see which shell you are using

$ echo $SHELL
/bin/bash

A typical shell window looks something like:

[image: shelllooklike]

	first line shows only a prompt

	
	indicates the shell is waiting for input

	your shell may use different text for the prompt

	do not type the prompt, only the commands that follow it

	the second line

	
	command is ls, with an option -F and an argument /

	options change the behavior of a command

	each part is separated by spaces

	capitalization matters

	commands can have more than one option or arugment

	commands don’t always require and option or argument

	lines 3-5 contain output that command produced

	
	this is a list of files and folders in the root directory (/)

Finally, the shell again prints the prompt and waits for you to type the next command.

Warning

Spaces and capitalization are important!

The command line is always case sensitive.

There is always a space between command and option.

Hint

To re-enter the same command again use the up arrow to display the previous command. Press the up arrow twice to show the command before that (and so on).

Navigating Files and Directories

File System

files–hold information
directories (also called “folders”)–hold files or other directories

[image: TheFileSystem]

At the top is the root directory that holds everything else. We refer to it using a slash character, /, on its own; this is the leading slash in /home/amcooksey.

Inside that directory are other directories.

Underneath /Users, we find one directory for each user with an account on Nelle’s machine, her colleagues imhotep and larry.

[image: HomeDirectories]

Note

Directory names will vary depending on operating system.

This is just an example. Today we are all using Ubuntu Linux. Instead of ‘Users’ you will have a directory called ‘home’. It works the same way.

Print working directory (pwd)

Directories are like places - at any time while we are using the shell we are in exactly one place, called our current working directory. Commands mostly read and write files in the current working directory, i.e. “here”, so knowing where you are before running a command is important. pwd shows you where you are:

$ pwd
/home/amcooksey

Typically, when you open a new command prompt you will be in your home directory to start.

List files and directories (ls)

We can see the contents of our current directory by running ls.

$ ls
Desktop Documents Downloads Music Pictures Public Templates Videos

Your results may be slightly different depending on your operating system and how you have customized your filesystem.

ls prints the names of the files and directories in the current directory. We can make its output more comprehensible by using the option -F (also known as a switch or an option) , which tells ls to add a marker to file and directory names to indicate what they are. A trailing / indicates that this is a directory.

$ ls -F
Desktop/ Documents/ Downloads/ Music/ Pictures/ Public/ Templates/ Videos/

Here, we can see that our home directory contains mostly sub-directories. Any names in your output that don’t have trailing slashes, are plain old files.

ls -l displays the items in a list with more imformation:

$ ls -l
total 32
drwxr-xr-x 2 amcooksey root 4096 Jan 29 10:02 Desktop
drwxr-xr-x 2 amcooksey iplant-everyone 4096 Jan 29 10:02 Documents
drwxr-xr-x 2 amcooksey iplant-everyone 4096 Jan 29 10:02 Downloads
drwxr-xr-x 2 amcooksey iplant-everyone 4096 Jan 29 10:02 Music
drwxr-xr-x 2 amcooksey iplant-everyone 4096 Jan 29 10:02 Pictures
drwxr-xr-x 2 amcooksey iplant-everyone 4096 Jan 29 10:02 Public
drwxr-xr-x 2 amcooksey iplant-everyone 4096 Jan 29 10:02 Templates
drwxr-xr-x 2 amcooksey iplant-everyone 4096 Jan 29 10:02 Videos

Change directory (cd)

We can change our location to a different directory, so we are no longer located in our home directory. The command doesn’t change the directory, it changes the shell’s idea of what directory we are in.

Hint

Begin typing a file or directory and press Tab. The shell will autocomplete the name.

We can move into the directory we downloaded to our Desktop:

$ cd Desktop

We can see what’s there using ls:

$ cd data
$ ls -l
total 116
-rw-r--r-- 1 amcooksey iplant-everyone 283 Aug 7 20:13 amino-acids.txt
drwxr-xr-x 2 amcooksey iplant-everyone 4096 Aug 7 20:14 animal-counts
-rw-r--r-- 1 amcooksey iplant-everyone 136 Aug 7 20:13 animals.txt
drwxr-xr-x 2 amcooksey iplant-everyone 4096 Aug 7 20:13 elements
-rw-r--r-- 1 amcooksey iplant-everyone 554 Aug 7 20:13 morse.txt
drwxr-xr-x 2 amcooksey iplant-everyone 4096 Aug 7 20:14 pdb
-rw-r--r-- 1 amcooksey iplant-everyone 8898 Aug 7 20:13 planets.txt
-rw-r--r-- 1 amcooksey iplant-everyone 45 Aug 7 20:13 salmon.txt
-rw-r--r-- 1 amcooksey iplant-everyone 73861 Aug 7 20:13 sunspot.txt

We now know how to go down the directory tree, but how do we go up?

With our methods so far, cd can only see sub-directories inside your current directory. There are different ways to see directories above your current location; we’ll start with the simplest.

cd without an argument will return you to your home directory

$ cd
$ pwd
/home/amcooksey

The shell interprets the character ~ (tilde) at the start of a path to mean “the current user’s home directory”. So cd ~ will also take you to your home directory.

$ cd ~
$ pwd
/home/amcooksey

- (dash) character. cd will translate - into the previous directory I was in, which is faster than having to remember, then type, the full path.

move up one directory level that looks like this:

$ cd ..

.. is a special directory name meaning “the directory containing this one”

To move up two directory levels:

$ cd ../..

In the same way that .. represents the directory above the current working directory, . represents the current working directory. More on this later.

Relative vs Absolute Paths

When you use a relative path with a command like ls or cd, it tries to find that location from where we are, rather than from the root of the file system.

However, it is possible to specify the absolute path to a directory by including its entire path from the root directory, which is indicated by a leading slash. The leading / tells the computer to follow the path from the root of the file system, so it always refers to exactly one directory, no matter where we are when we run the command.

Working with Files and Directories

Creating directories (mkdir)

As you might guess from its name, mkdir means “make directory”.
Make a new directory called thesis.

$ mkdir thesis

Since thesis is a relative path (i.e., does not have a leading slash, like /what/ever/thesis), the new directory is created in the current working directory:

$ ls -F
creatures/ data/ molecules/ north-pacific-gyre/ notes.txt pizza.cfg
solar.pdf thesis/ writing/

Good Names for Files and Directories

Complicated names of files and directories can make your life painful when working on the command line. Here we provide a few useful tips for the names of your files.

	Don’t use spaces.

Spaces can make a name more meaningful, but since spaces are used to separate arguments on the command line it is better to avoid them in names of files and directories. You can use - or _ instead (e.g. north-pacific-gyre/ rather than north pacific gyre/).

	Don’t begin the name with - (dash).

Commands treat names starting with - as options.

	Stick with letters, numbers, . (period or ‘full stop’), - (dash) and _ (underscore).

If you need to refer to names of files or directories that have spaces or other special characters, you should surround the name in quotes (“”).

Since we’ve just created the thesis directory, there’s nothing in it yet:

$ ls -F thesis

Creating a text files

With a text editor

Let’s change our working directory to thesis using cd, then run a text editor called Nano to create a file called draft.txt:

$ cd thesis
$ nano draft.txt

Let’s type in a few lines of text. Once we’re happy with our text, we can press Ctrl+O (press the Ctrl or Control key and, while holding it down, press the O key) to write our data to disk (we’ll be asked what file we want to save this to: press Return to accept the suggested default of draft.txt).

[image: nano]

Once our file is saved, we can use Ctrl-X to quit the editor and return to the shell.

In nano, along the bottom of the screen you’ll see ^G Get Help ^O WriteOut. This means that you can use Control-G to get help and Control-O to save your file.

nano doesn’t leave any output on the screen after it exits, but ls now shows that we have created a file called draft.txt:

$ ls
draft.txt

With touch

We have seen how to create text files using the nano editor. Now, try the following command:

$ touch my_file.txt

What did the touch command do?

Use ls -l to inspect the files. How large is my_file.txt?

$ ls -l

Note

You may have noticed that files are named “something dot something”, and in this part of the lesson, we always used the extension .txt. This is just a convention: we can call a file mythesis or almost anything else we want. However, most people use two-part names most of the time to help them (and their programs) tell different kinds of files apart. The second part of such a name is called the filename extension, and indicates what type of data the file holds.

Naming a PNG image of a whale as whale.mp3 doesn’t somehow magically turn it into a recording of whalesong, though it might cause the operating system to try to open it with a music player when someone double-clicks it.

Moving files and directories (mv)

Returning to the data-shell directory,

$ cd ~/Desktop/data-shell/

In our thesis directory we have a file draft.txt which isn’t a particularly informative name, so let’s change the file’s name using mv, which is short for “move”:

$ mv thesis/draft.txt thesis/quotes.txt

The first argument tells mv what we’re “moving”, while the second is where it’s to go. In this case, we’re moving thesis/draft.txt to thesis/quotes.txt, which has the same effect as renaming the file. Sure enough, ls shows us that thesis now contains one file called quotes.txt:

$ ls thesis
quotes.txt

Warning

One has to be careful when specifying the target file name, since mv will silently overwrite any existing file with the same name, which could lead to data loss. An additional option, mv -i (or mv –interactive), can be used to make mv ask you for confirmation before overwriting.

mv also works on directories

Let’s move quotes.txt into the current working directory. We use mv once again, but this time we’ll just use the name of a directory as the second argument to tell mv that we want to keep the filename, but put the file somewhere new. (This is why the command is called “move”.) In this case, the directory name we use is the special directory name ‘.’ that we mentioned earlier.

$ mv thesis/quotes.txt .

The effect is to move the file from the directory it was in to the current working directory. ls now shows us that thesis is empty:

$ ls thesis

Copying Files and Directories (cp)

The cp command works very much like mv, except it copies a file instead of moving it. We can check that it did the right thing using ls with two paths as arguments — like most Unix commands, ls can be given multiple paths at once:

$ cp quotes.txt thesis/quotations.txt
$ ls quotes.txt thesis/quotations.txt
quotes.txt thesis/quotations.txt

We can also copy a directory and all its contents by using the recursive option -r, e.g. to back up a directory:

$ cp -r thesis thesis_backup

We can check the result by listing the contents of both the thesis and thesis_backup directory:

$ ls thesis thesis_backup
thesis:
quotations.txt

thesis_backup:
quotations.txt

Removing files and directories (rm)

Returning to the data-shell directory, let’s tidy up this directory by removing the quotes.txt file we created. The Unix command we’ll use for this is rm (short for ‘remove’):

$ rm quotes.txt

We can confirm the file has gone using ls:

$ ls quotes.txt
ls: cannot access 'quotes.txt': No such file or directory

rm can remove a directory and all its contents if we use the recursive option -r, and it will do so without any confirmation prompts:

$ rm -r thesis

Warning

Deleting Is Forever

The Unix shell doesn’t have a trash bin that we can recover deleted files from. Instead, when we delete files, they are unlinked from the file system so that their storage space on disk can be recycled. Given that there is no way to retrieve files deleted using the shell, rm -r should be used with great caution (you might consider adding the interactive option rm -r -i).

Operations with multiple files and directories

Oftentimes one needs to copy or move several files at once. This can be done by providing a list of individual filenames, or specifying a naming pattern using wildcards.

Copy with Multiple Filenames

For this exercise, you can test the commands in the data-shell/data directory.

In the example below, what does cp do when given several filenames and a directory name?

$ mkdir backup
$ cp amino-acids.txt animals.txt backup/

If given more than one file name followed by a directory name (i.e. the destination directory must be the last argument), cp copies the files to the named directory.

Using wildcards for accessing multiple files at once

* is a wildcard, which matches zero or more characters. Let’s consider the data-shell/molecules directory: *.pdb matches ethane.pdb, propane.pdb, and every file that ends with ‘.pdb’. On the other hand, p*.pdb only matches pentane.pdb and propane.pdb, because the ‘p’ at the front only matches filenames that begin with the letter ‘p’.

? is also a wildcard, but it matches exactly one character. So ?ethane.pdb would match methane.pdb whereas *ethane.pdb matches both ethane.pdb, and methane.pdb.

Wildcards can be used in combination with each other e.g. ???ane.pdb matches three characters followed by ane.pdb, giving cubane.pdb ethane.pdb octane.pdb.

Other Useful Tools and Commands

sudo

allows users to run programs with the security privileges of the superuser

This command is used as a prefix to other commands that you need elevated permissions to run. Which commands you will need this for will vary depending on the computer you are using at the time. If you receive a permission denied error it is likely that you will need ‘sudo’ to run the command.

$ docker run hello-world:latest

$ sudo docker run hello-world:latest

Note

Use ‘sudo’ with caution. Sometimes important files restrict permission because they are very senstive and it is un-wise to change them unless you know what you are doing.

head

prints the first few (10 by default) lines of a file

$ head data/sunspot.txt
(* Sunspot data collected by Robin McQuinn from *)
(* http://sidc.oma.be/html/sunspot.html *)

(* Month: 1749 01 *) 58
(* Month: 1749 02 *) 63
(* Month: 1749 03 *) 70
(* Month: 1749 04 *) 56
(* Month: 1749 05 *) 85
(* Month: 1749 06 *) 84
(* Month: 1749 07 *) 95

tail

prints the last few (10 by default) lines of a file

$ tail data/sunspot.txt
(* Month: 2004 05 *) 42
(* Month: 2004 06 *) 43
(* Month: 2004 07 *) 51
(* Month: 2004 08 *) 41
(* Month: 2004 09 *) 28
(* Month: 2004 10 *) 48
(* Month: 2004 11 *) 44
(* Month: 2004 12 *) 18
(* Month: 2005 01 *) 31
(* Month: 2005 02 *) 29

history

displays the last few hundred commands that have been executed

$ history
1988 cd ..
1989 ls
1990 cd data-shell/
1991 ls
1992 mkdir thesis
1993 ls
1994 ls-F
1995 ls
1996 cd Desktop/data-shell/data/
1997 pwd
1998 cd ..
1999 pwd
2000 ls -F
2001 cd Desktop/data-shell/
2002 head data/sunspot.txt
2003 tail data/sunspot.txt
2004 history

grep

finds and prints lines in files that match a pattern

$ cd
$ cd Desktop/data-shell/writing
$ cat haiku.txt
The Tao that is seen
Is not the true Tao, until
You bring fresh toner.

With searching comes loss
and the presence of absence:
"My Thesis" not found.

Yesterday it worked
Today it is not working
Software is like that.

$ grep "not" haiku.txt
Is not the true Tao, until
"My Thesis" not found
Today it is not working

find

finds files

To find all the files in the ‘writing’ directory and sub-directories

$ find .
.
./thesis
./thesis/empty-draft.md
./tools
./tools/format
./tools/old
./tools/old/oldtool
./tools/stats
./haiku.txt
./data
./data/two.txt
./data/one.txt
./data/LittleWomen.txt

To find all the files that end with ‘.txt’

$find -name *.txt
./haiku.txt

echo

print stings (text)

This is especially useful when writing Bash scripts

$echo hello world
hello world

>

prints output to a file rather than the shell

$ grep not haiku.txt > not_haiku.txt
$ ls
data haiku.txt not_haiku.txt thesis tools

>>

appends output to the end of a file

$ grep Tao haiku.txt >> not_haiku.txt
$ nano not_haiku.txt

|nano>>|

|

directs output from the first command into the second command (and the second into the third)

$ cd ../north-pacific-gyre/2012-07-03
$ wc -l *.txt | sort -n | head -n 5
240 NENE02018B.txt
300 NENE01729A.txt
300 NENE01729B.txt
300 NENE01736A.txt
300 NENE01751A.txt

wget

downloads things from the internet

$ cd ~/Desktop
$ rm data-shell.zip
$ wget http://swcarpentry.github.io/shell-novice/data/data-shell.zip

Getting help and further learning

Note

This is was just a brief summary of how to use the command line. There is much, much more you can do. For more information check out the Software Caprentry [https://software-carpentry.org/workshops/] page.

There are two common ways to find out how to use a command and what options it accepts:

The help option

We can pass a –help option to the command, such as:

$ ls --help

The man command

The other way to learn about ls is to type

$ man ls

This will open the manual in your terminal with a description of the ls command and its options and, if you’re lucky, some examples of how to use it.

To navigate through the man pages, you may use ↑ and ↓ to move line-by-line, or try B and Spacebar to skip up and down by a full page.

To quit the man pages, press q.

Manual pages on the web

Of course there is a third way to access help for commands: searching the internet via your web browser. When using internet search, including the phrase unix man page in your search query will help to find relevant results.GNU provides links to its manuals [http://www.gnu.org/manual/manual.html] including the core GNU utilities [http://www.gnu.org/software/coreutils/manual/coreutils.html] , which covers many commands introduced within this lesson.

	On Github: |Github Repo Link|

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Basics of Linux

Modern web, cloud, high performance computing, and most data science applications are run on operating systems (OS) other than Microsoft Windows. To do data intensive science, you need a familiarity with Linux [https://www.linux.org/]. We’ve scheduled several sections during FOSS for working on Linux Systems, including on the Command Line Interface (CLI) and Unix Shell [https://cyverse-foundational-open-science-skills-2020.readthedocs-hosted.com/en/latest/software_essentials/commandline.html], and using CyVerse’ Atmosphere Cloud [https://cyverse-foundational-open-science-skills-2020.readthedocs-hosted.com/en/latest/CyVerse/atmo.html], which runs Linux OS virtual machines.

The good news comes in two parts. First, whether you know it or not, you probably already use Linux or a platform based on Linux, on a daily basis. Do you have an Android or iOS phone? If you own a Mac OS X [https://itsfoss.com/mac-linux-difference/] device, you already enjoy many of the benefits of a Linux-like OS, including access to a terminal. Second, the Linux experience has generally been described as satisfying [https://www.wired.com/2016/01/i-moved-to-linux-and-its-even-better-than-i-expected/], and many users report moving on from Windows OS to Linux comes without regret [https://www.freecodecamp.org/news/i-switched-from-windows-to-linux-here-are-the-lessons-i-learned-along-the-way-434da84ab63f/].

Over 87% [https://en.wikipedia.org/wiki/Usage_share_of_operating_systems] of the personal computer market still relies on the popular Microsoft OS. However, the landscape changes completely for mobile apps (99% Linux or Linux-like [Android, iOS], <0.1% Windows), web (66% Linux, 32% Windows), and cloud or HPC (100% Linux). Microsoft is acutely aware of this disparity, and is actively working to integrate Linux into their OS, including their acquisition of GitHub [https://www.theverge.com/2018/6/18/17474284/microsoft-github-acquisition-developer-reaction] (and how it has changed [https://www.infoworld.com/article/3335256/github-after-microsoft-how-it-has-changed.html]), and the release of Windows Subsystem for Linux (WSL) 2 [https://docs.microsoft.com/en-us/windows/wsl/wsl2-install].

Common Linux Operating Systems

The most common operating systems you’ll see used for data science are:

	Alpine [https://alpinelinux.org/] - small and lightweight, useful in container applications

	CentOS [https://www.centos.org/] - stable, reliable, most commonly used on web and cloud servers

	Debian [https://www.debian.org/] - lightweight, utilitarian, stable

	Ubuntu [https://www.ubuntu.com/] - utilitarian, user friendly, most popular distribution, based on Debian

Enterprise Distributions:

	Red Hat [https://www.redhat.com/en] - based on open source software, you pay for customer support

Installing Linux

Desktop-based Distributions

	Ubuntu [https://tutorials.ubuntu.com/tutorial/tutorial-install-ubuntu-desktop]

	Debian [https://www.debian.org/releases/stable/installmanual]

	Mint [https://linuxmint-installation-guide.readthedocs.io/en/latest/] - “modern, elegant and comfortable operating system which is both powerful and easy to use.”

	OpenSUSE [https://www.opensuse.org/] - “The makers’ choice for sysadmins, developers and desktop users.”

Windows Subsystem for Linux

The so-called “WSL” is a complete linux subsystem that runs under Windows 10. Microsoft recently announced WSL 2.0 [https://devblogs.microsoft.com/commandline/announcing-wsl-2/].

Windows Linux Dual boot

Not ready to take the Linux plunge yet? Why not set up a Windows-Linux dual boot?

	Ubuntu [https://www.lifewire.com/ultimate-windows-8-1-ubuntu-dual-boot-guide-2200654]

	Mint [https://itsfoss.com/guide-install-linux-mint-16-dual-boot-windows/]

Package Managers

Linux uses package management [https://en.wikipedia.org/wiki/Package_manager] services to install programs. If you’re a R user, this should seem familiar.

Packages can be installed on the command line, or in graphic UI.

Self Paced

Best Linux Distributions for Beginners [https://itsfoss.com/best-linux-beginners/]

Beginners Guide to Linux [https://www.lifewire.com/beginners-guide-to-linux-4090233]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Introduction to Reproducible Science

The so-called reproducibility crisis (see 1 , 2 , 3) is something you have
probably heard about (and maybe one of the reasons you have come to FOSS).
Headlines in the media (such as Most scientists can't replicate studies by their peers)
definitely give pause to researchers and ordinary citizens who hope
that the science used to recommend a course of medical treatment or design
self-driving cars is sound.

Before we go further, it’s actually important to ask what is reproducibility?

Question

How do you define reproducible science?

Answer

In Reproducibility vs. Replicability, Hans Plesser gives the following
useful definitions:

	Repeatability (Same team, same experimental setup): The measurement
can be obtained with stated precision by the same team using the same
measurement procedure, the same measuring system, under the same operating
conditions, in the same location on multiple trials. For computational
experiments, this means that a researcher can reliably repeat her own
computation.

	Replicability (Different team, same experimental setup): The
measurement can be obtained with stated precision by a different team
using the same measurement procedure, the same measuring system, under the
same operating conditions, in the same or a different location on multiple
trials. For computational experiments, this means that an independent group
can obtain the same result using the author’s own artifacts.

	Reproducibility (Different team, different experimental setup): The
measurement can be obtained with stated precision by a different team,
a different measuring system, in a different location on multiple trials.
For computational experiments, this means that an independent group can
obtain the same result using artifacts which they develop completely
independently.

The paper goes on to further simplify:

	Methods reproducibility: provide sufficient detail about procedures
and data so that the same procedures could be exactly repeated.

	Results reproducibility: obtain the same results from an independent
study with procedures as closely matched to the original study as
possible.

	Inferential reproducibility: draw the same conclusions from either an
independent replication of a study or a reanalysis of the original study.

Discussion Question

How do these definitions apply to your research/teaching?

Work with your fellow learners to develop a shortlist of ways reproducibility
relates to your work. Try to identify challenges and even successes you’d
like to share.

Often, when we say “reproducibility” we mean all or at least several of the
concepts the proceeding discussion encompasses. Really, reproducibility can be
thought of as set values such as some laboratories express in a code of conduct,
(see for example Ross-Ibarra Lab code of conduct or Bahlai Lab Policies).
Reproducibility comes from our obligations and desires to work ethically,
honestly, and with confidence that the data and knowledge we produce is done
has integrity. Reproducibility is also a “spectrum of practices”, not a
single step. (See figure below from Peng 2011).

[image: spectrum]

Assuming you have taken in the potentially anxiety inducing information above,
the most important thing to know is that there is a lot of help to make
reproducibility a foundation of all of your research.

Reproducibility Tutorial

In the following tutorial, we will introduce some of the software introduced at
FOSS in the context of creating a reproducible experiment. The goal will be
to give an example of how connecting various software pieces and practices can
generate a well-documented research project. Though the example will be drawn
from a biological example, the ideas an approaches apply to the sciences in
general.

	Reproducibility Tutorial

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Communication

We will cover both internal and external communication strategies during the workshop.

Internal

Choosing which software to use for your internal lab communication can be complicated by the cost of setting up, the cost of maintaining, and simply by the sheer number of platforms that are out there.

For this workshop, we use SLACK [https://slack.com/] (Searchable Log of All Conversation & Knowledge). Microsoft’s competitor to SLACK is Microsoft Teams [https://teams.microsoft.com/start].

Remember, the intention of these platforms are to improve productivity & not become a distraction.

Other popular alternatives

	BaseCamp [https://basecamp.com/]

	Discord [https://discordapp.com/]

	Mastodon [https://joinmastodon.org/]

	Mattermost [https://mattermost.com/]

Create a SLACK Workspace

	Create a new Workspace [https://get.slack.help/hc/en-us/articles/206845317-Create-a-Slack-workspace]

	Create channels, add apps & tools [https://get.slack.help/hc/en-us/articles/217626298-tips-for-team-creators-and-admins]

Create a Gitter

	Create a Workspace [https://gitter.im]

	Create channels [https://gitter.im/home/learn]

External

Although we didn’t cover it explicitly in the announcement for the workshop, communicating with the public and other members of your science community is one of the most important parts of your science!

There are many ways scientists use social media and the web to share their data science ideas:

	“Science Twitter” [https://www.sciencemag.org/news/2018/08/scientists-do-you-want-succeed-twitter-here-s-how-many-followers-you-need] - is really just regular Twitter [https://twitter.com/hashtag/science?lang=en], but with a focus on following other scientists and organizations, and tweeting about research you’re interested in. By building up a significant following, more people will know you, know about your work, and you’ll have a higher likelihood of meeting other new collaborators.

	Blogs [https://blogging.org/blog/top-science-blogs/] - there are numerous platforms for blogging about research, the older platforms tend to dominate this space. Other platforms like, Medium [https://medium.com/topic/data-science] offer a place for reseachers to create personalized reading spaces and self publish.

	Community groups - There are lists (and lists of lists) of nationals research organizations [https://www.google.com/search?q=list+of+professional+science+organizations], in which a researcher can become involved. These older organziations still rely on official websites, science journal blogs, and email lists to communicate with their members. In the earth sciences there are open groups which focus on communication like the Earth Science Information Partners (ESIP) [https://www.esipfed.org/] with progressive ideas about how data and science can be done. Other groups, like The Carpentries [https://carpentries.org/] and Research Bazaar [https://resbazblog.wordpress.com/about/] are focused on data science training and digital literacy.

Important

Remember Personal and Professional Accounts are Not Isolated

You decide what you post on the internet. Your scientist identity may be a part of your personal identity on social media, it might be separate. A future employer or current employer can see your old posts. What you post in your personal accounts can be considered a reflection of the organization you work for and may be used in decisions about hiring or dismissal.

Self-Paced Material

15 Data Science Communities to Join [https://towardsdatascience.com/15-data-science-slack-communities-to-join-8fac301bd6ce]

Python & Slack [https://towardsdatascience.com/python-and-slack-a-natural-match-60b136883d4d]

Slack CLI notifications [https://samapriya.github.io/projects/slack_notifier_cli_addon/]

Gitter Services [https://gitlab.com/gitlab-org/gitter/services]

Meetups [https://www.meetup.com/]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

	Live chat/help: Click on the [image: Intercom] on the bottom-right of the page for questions on documentation

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

GitHub

Version Control [https://en.wikipedia.org/wiki/Version_control] is an important component in software development which manages changes to documents, websites, code, or other digital information. Version control can save you when code changes break things. Web hosting of your code repositories lets you share and work on code together and save your work in the event of a hardware failure.

The most commmon version control software [https://en.wikipedia.org/wiki/List_of_version-control_software] in data science are git, svn, cvs, and bzr.

Given the limited amount of time we have this week, we are only going to cover Git [https://git-scm.com/] and one web-based hosting service (GitHub [https://github.com/]) in this camp.

In this lesson you will learn how to:

	
	Interact with git via GitHub

	
	Using a browser

	Using the command line

	Add collaborators to your organization

	
	Initialize a git repository on the command line and push it to GitHub

	
	Push/pull files

	Commit to GitHub

	
	Learn about versions

	
	Forks

	Branches

	Merges

	Revert

	Releases

	Badging

Important

GitHub is not really intended for storing or manipulating data

Navigating & Interacting with GitHub

Basic Layout

[image: Git_Hub]

The basic layout includes:

	Profile

	Organizations

	Teams

	Repositories

	Projects [https://help.github.com/en/articles/about-project-boards]

	Followers

	Contributions

	Watch / Unwatch repos

Add a Collaborator

Online only

	Go to your Organization

	Click “people”

	Invite someone!

OR

	Can add collaborators under “Settings” -> “Collaborators”

Create a Repo Online & Locally

Online

	Go to your dasboard

	Click “New”

	Name the repository

	Initialize with “README”
- form of metadata
- this tells you and the those looking at the repository what it is about

	Go to “Clone or Download” and clone to local folder / directory titled “Lab”

	Can delete repo under “Settings” -> “Options”

Command Line

	Locate or create a local folder / directory structure titled “Lab”

cd
mkdir -p github/lab
cd github/lab

	Initialize folder as a repository with git

git init
echo "This is a test repo" >> README.md #append to file
git add . #add all the files in the current directory
git commit -m "initial project"

Note

Documentation is vital You will be doing this for YOU 6 months from now

Interact with GitHub

Clone a repo

This is used to work locally rather than online.

Online

	Click the down arrow “Clone or download”

	Click “Open in Desktop”

	Select where to save it
- Create a folder for GitHub repos on your computer locally

Command Line

cd path/to/location
git clone <url> [rename]
#URL of thte repository on GitHub
#rename the directory (optional)

Commit

Online

	Create a file by clicking “Create a new file”

	Name file (/name)

	Write commit message

	Press “Commit”

OR

	Create a file locally

	Click “Upload files”

	Select file(s) within a folder

Command Line

	Create a file

cd path/to/repo
touch file.txt

	Add file(s)

git add -A #adds all the new files
git push
git commit -m "added file" #-m initiates a message

Tip

It is good practice to write commmit messages to remember what you added or fixed.

Create an Issue

Issues are great for tracking decisions made or to-do lists

Online only

	Click on the repository you just created.

	Click on “Issues”

	Click on “New issue”

	Create a title (# and issue number for reference)

	Assign to someone, or create a label

	Submit new issue

	Close issue

Version Control

Online

	Click on file

	Click “History”

Command Line

git log
git log --stat #gives abbreviated stats for each commit
git log --pretty=oneline #can also add options: short, full, fuller
git log --pretty=format:"%h - %an, %ar : %s #lots of options for pretty=format
q #to quit

Create a branch

Branches are useful to working on code etc. without disturbing the master branch.

Online

	Select the down arrow on the repository page that says “Branch:master”

	Create a new branch name

OR

	Add new file or edit existing file.

	Write a commit message.

	Select “Create a new branch”

Command Line

	Create a new branch

cd path/to/repo
#common practice to pull before commiting anything
git pull #does a fetch for you
git checkout -b new-branch #creates a new branch and puts you on that branch
#set new branch upstream
git push --set-upstream origin new-branch

	Edit some files

#edit files
vi path/to/file
q #to quit

	Commit changes

git pull
git add
commit -am "changed a file" #stage changes and write a message
git push

Make a pull request

Pull requests are useful to have another set of eyes to review changes before merging them with the master branch.

Online Only

	From your branch, create a new file

	Commit file to your branch

	Hit “Compare & pull request”

	Go to pull requests

	Set it on the master branch

Merge

Online

	Go to “Pull requests”

	Select down arrow of “Merge pull request” (if no conflicts)

	Delete branch

	Leave comment if need be

	Close pull request

Command Line

cd path/to/repo
git pull
git checkout new-branch
git merge master #testing to see if merging breaks anythin
git checkout master
git merge new-branch #now repull it all into master

Revert

Command Line

git log
#copy tag for last working commit
git revert <tag to last working commit>
#will make it look like a new commit
git add -A
git commit -m "changed things back to <commit tag>"
git push

Advanced

Fork

Online

	Go to a new repository

	Click fork

	Save to personal repository.

	Clone to Desktop.

	Interact via online or in Desktop.

	If want to make suggestions, can create a pull request.

Command Line

git close <github-repo>
cd <new-folder>
git fork

Etc.

These are Online only

	
	Versioning

	
	Go to “Releases”

	Click “Create a new release”

	Tag version: Version #

	Release title: I usually put the date of the release, but any system can work

	
	Reactions:

	
	Create a new pull request

	Looking at the messages, click the smiley face to give a reaction

	
	Badges

	
	Go find a badge [https://naereen.github.io/badges/]!

	Copy badge code into README:

Git cheat sheet

Here is a list of the most important commands in Git:

	Git Task

	Command

	Description

	Set up your profile locally

	git config --global user.name "Cy Unicorn"

	Set your user name

	
	git config --global user.email Cy1@cyverse.org

	Set your email address

	Create a Repository locally

	git init

	Initialize a folder as a git repository

	Get an existing repository from a web service

	git clone ssh://git@github.com/[username]/[repository-name].git

	Create a local copy of a remote repository

	Branching & Merging

	Description

	git branch

	List branches (the asterisk denotes the current branch)

	git branch -a

	List all branches (local and remote)

	git branch [branch name]

	Create a new branch

	git branch -d [branch name]

	Delete a branch

	git push origin --delete [branch name]

	Delete a remote branch

	git checkout -b [branch name]

	Create a new branch and switch to it

	git checkout -b [branch name] origin/[branch name]

	Clone a remote branch and switch to it

	git checkout [branch name]

	Switch to a branch

	git checkout -

	Switch to the branch last checked out

	git checkout -- [file-name.txt]

	Discard changes to a file

	git merge [branch name]

	Merge a branch into the active branch

	git merge [source branch] [target branch]

	Merge a branch into a target branch

	git stash

	Stash changes in a dirty working directory

	git stash clear

	Remove all stashed entries

	Sharing & Updating Projects

	Description

	git push origin [branch name]

	Push a branch to your remote repository

	git push -u origin [branch name]

	Push changes to remote repository (and remember the branch)

	git push

	Push changes to remote repository (remembered branch)

	git push origin --delete [branch name]

	Delete a remote branch

	git pull

	Update local repository to the newest commit

	git pull origin [branch name]

	Pull changes from remote repository

	git remote add origin ssh://git@github.com/[username]/[repository-name].git

	Add a remote repository

	git remote set-url origin ssh://git@github.com/[username]/[repository-name].git

	Set a repository’s origin branch to SSH

	Inspection & Comparison

	Description

	git log

	View changes

	git log --summary

	View changes (detailed)

	git diff [source branch] [target branch]

	Preview changes before merging

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

CI/CD

Building your own software, data management or workflow management systems requires you to do a significant amount of interpersonnel management, as well as tracking of development.

Software engineers having long suffered under the burden of disorganization and communication with clients, have come up with a framework for developing software and sharing it with their users.

While data science applications have a different audience and intended result, the organizational practices of software developers are a valuable and useful tool to consider integrating into your open science lab group.

Frequently Used Terms

	Continuous Integration: (CI) is testing automation to check that the application is not broken whenever new commits are integrated into the main branch

	Continuous Delivery: (CD) is an extension of ‘continuous integration’ to make sure that you can release new changes in a sustainable way

	Continuous Deployment: a step further than ‘continuous delivery’, every change that passes all stages of your production pipeline is released

	Continuous Development: a process for iterative software development and is an umbrella over several other processes including ‘continuous integration’, ‘continuous testing’, ‘continuous delivery’ and ‘continuous deployment’

	Continuous Testing: a process of testing and automating software development.

	Development: the environment on your computer where you write code

	DevOps: Development and information techology Operations is the set of practices surrounding CI/CD

	Production: environment where users access the final code after all of the updates and testing

	Stage: environment that is as similar to the production environment as can be for final testing

Continuous Development

The software developer concept of ‘continuous delivery’ can be applied to your data science projects and lab.

As we’ve discussed, version control is an important component of modern software development. Critically, version control can also be used in data science applications and for research project management. There are two dominant forms of project management for continuous delivery in open source software: Waterfall [https://en.wikipedia.org/wiki/Waterfall_model] and Agile Scrum [https://en.wikipedia.org/wiki/Agile_software_development].

https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment

Agile

Agile development practices involve organizing a team around short term (1-2 week long) ‘sprints’. Sprints are organized by scrum master [https://en.wikipedia.org/wiki/Scrum_(software_development)]. Team members are assigned tasks and evaluate their results during sprint reviews and planning sessions.

Waterfall

Similar to the common Gantt chart [https://en.wikipedia.org/wiki/Gantt_chart] a waterfall model [https://en.wikipedia.org/wiki/Waterfall_model] is a breakdown of project activities into linear sequential phases, where each phase depends on the deliverables of the previous one and corresponds to a specialisation of tasks.

Note

In this workshop, we’re working with GitHub, but there are other services, like GitLab [https://about.gitlab.com/] or Bitbucket [https://bitbucket.org] which might fit your needs better.

Continuous Integration

Doing reproducible science requires you to host your code and versioned software used to complete the analysis, in addition to the actual data. GitHub or Gitlab could become the central point supporting your data science lab.

Powerful uses of GitHub include integration with other web services, like container registries (DockerHub [https://hub.docker.com/]), websites (ReadTheDocs [https://readthedocs.org/], web sites https://pages.github.com/), continuous integration (CircleCI [https://circleci.com], Jenkins [https://jenkins.io/], Travis [https://travis-ci.org/]), and workflow managers GitHub Actions [https://github.com/features/actions].

Continous Integration (CI) [https://en.wikipedia.org/wiki/Continuous_integration] is a practice of checking code repositories (typically a few times a day) to test for changes which may cause failures.

CI can be integrated into either scientific programming workflows or into code development

The most popular CI tools are:

	Travis CI [https://travis-ci.org/] - fast, easy to set up, cloud based

	Circle CI [https://circleci.com/] - fast, easy to set up, cloud based

	Jenkins [https://jenkins.io/] - free, can be hosted internally (requires server), highly customizable (plugins)

When to use CI?

	building or hosting services to a community

	developing versioned copies of containers for public consumption

	DevOps + Data Science

Travis CI

Setup [https://docs.travis-ci.com/user/tutorial/]

Circle CI

Setup [https://circleci.com/docs/enterprise/quick-start/]

Jenkins

Jenkins is a bit harder to set up because you need a dedicated server

Setup [https://jenkins.io/doc/book/installing/]

GitHub Actions

GitHub now offers ‘actions’ which serve as an integrated CI for your repositories [https://help.github.com/en/actions/building-and-testing-code-with-continuous-integration/setting-up-continuous-integration-using-github-actions]

Badges

Status badges can be embedded in a README.md. Badges let you show the state of code or documentation.

You can view a diverse list of different badges on Shields.io [https://shields.io/]

Now you can pass the style GET argument,
to get custom styled badges same as you would for shields.io.
If no argument is passed, flat is used as default.

	STYLE

	BADGE

	flat

	[image: Flat Badge]

	flat-square

	[image: Flat-Square Badge]

	for-the-badge

	[image: Badge]

	plastic

	[image: Plastic Badge]

	social

	[image: Social Badge]

Self paced

Circle vs Jenkins vs Travis [https://stackshare.io/stackups/circleci-vs-jenkins-vs-travis-ci]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Websites & Documentation

This website is rendered using a ReadTheDocs.org [https://readthedocs.org/] template. Think of RTD as “Continuous Documentation”.

ReadTheDocs has become a popular tool for developing web-based documentation. CyVerse Learning Materials Github [https://github.com/CyVerse-learning-materials] hosts a few templates which you can view and pull for your own use.

Bookdown [https://bookdown.org/] is an open-source R package that facilitates writing books and long-form articles/reports with R Markdown.

GitHub Pages [https://pages.github.com/] using Jekyll [https://jekyllrb.com/] or Bootstrap.js [https://getbootstrap.com/], are another popular way of hosting websites via GitHub.

Confluence Wikis (CyVerse) [https://wiki.cyverse.org] are another tool for documenting your workflow.

Some things to remember

ReadTheDocs

	publishing websites via ReadTheDocs.com [https://readthedocs.com/dashboard/] costs money.

	You can work in an offline state, where you develop the materials and publish them to your localhost using Sphinx [https://docs.readthedocs.io/en/stable/intro/getting-started-with-sphinx.html]

	You can work on a website template in a GitHub repository, and pushes are updated in near real time using ReadTheDocs.com.

Bookdown

	Bookdown websites can be hosted by RStudio Connect [https://www.rstudio.com/products/connect/]

	You can publish a Bookdown website using Github Pages [https://github.blog/2016-08-17-simpler-github-pages-publishing/]

GitHub Pages

	You can pull templates from other GitHub users for your website, e.g. jekyll themes [http://themes.jekyllrc.org/]

	GitHub pages are free, fast, and easy to build, but limited in use of subdomain or URLs.

Confluence Wiki

	CyVerse is paying for Confluence access.

	Integration with other platforms like Jira.

	Scripting in the Confluence Wiki is different than other platforms and may be less reprodicuble.

Build your own Website

ReadTheDocs

	Install [https://docs.readthedocs.io/en/stable/install.html]

	Use Github [https://github.com/rtfd/readthedocs.org]

	Create a ReadTheDocs account [https://readthedocs.org/accounts/signup/]

Bookdown

	Install R and RStudio [https://www.rstudio.com/products/rstudio/download/]

	Install Bookdown package

install.packages("bookdown", dependencies=TRUE)

	Open the Bookdown demo and get started

GitHub Pages

	Create a GitHub account

	Clone the repo https://github.com/username/username.github.io

	Create an index.html

	Push it back to GitHub

CyVerse Confluence Wiki

	Create a CyVerse Account and log into https://wiki.cyverse.org

	Create a a new Blank Page

	Set permissions to share or make private

Methodology

Protocols.io [https://www.protocols.io/] - collaborative platform and preprint server for: science methods, computational workflows, clinical trials, operational procedures, safety checklists, and instructions / manuals.

QUBES [https://qubeshub.org/] - community of math and biology educators who share resources and methods for preparing students to tackle real, complex, biological problems.

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Data Management Overview

Why should you care about data management?

If you give your data to a colleague who has not been involved with your project, will they be able to make sense of it? Will they be able to use it effectively and properly?

If you come back to your own data in five years, will you be able to make sense of it? Will you be able to use it effectively and properly?

When you are ready to publish a paper, is it easy to find all the correct versions of all the data you used and present them in a comprehensible manner?

Data management produces self-describing datasets that:
- make life much easier for you and your collaborators
- benefit the scientific research community by allowing others to reuse your data
- are required by most funders and many journals
- Recent Dear Colleague letter from NSF [https://www.nsf.gov/pubs/2019/nsf19069/nsf19069.jsp]
- NSF proposal preparation guidelines: https://www.nsf.gov/pubs/policydocs/pappg19_1/pappg_11.jsp#XID4

Data Management Basics

The Data Life Cycle

Data management is the set of practices that allow researchers to effectively and efficiently handle data throughout the data life cycle. Although typically shown as a circle (below) the actually life cycle of any data item may follow a different path, with branches and internal loops. Being aware of your data’s future helps you plan how to best manage them.

[image: lifecycle]

Image from Strasser et al. [https://www.dataone.org/sites/all/documents/DataONE_BP_Primer_020212.pdf].

Data Types

	Different types of data require different management practices. What are some of the considerations for managing:

	
	tabular data

	images

	sound or video recordings

	geospatial data

	sensor data

	raw versus processed data

	files versus datasets

Best practices for the data life cycle

The summary below is adapted from the excellent DataONE best practices primer [https://www.dataone.org/sites/all/documents/DataONE_BP_Primer_020212.pdf].

	Plan:

	
	Describe the data that will be compiled, and how the data will be managed and made accessible throughout its lifetime.

	A good plan considers each of the stages below.

	Collect:

	
	Have a plan for data organization in place before collecting data.

	Collect and store observation metadata at the same time you collect the metadata.

	Take advantage of machine generated metadata.

	Assure:

	
	Record any conditions during collection that might affect the quality of the data.

	Distinguish estimated values from measured values.

	Double check any data entered by hand.

	Perform statistical and graphical summaries (e.g., max/min, average, range) to check for questionable or impossible values.

	Mark data qualtiy, outliers, missing values, etc.

Describe:
Comprehensive data documentation (i.e. metadata) is the key to future understanding of data. Without a
thorough description of the context of the data, the context in which they were collected, the
measurements that were made, and the quality of the data, it is unlikely that the data can be easily
discovered, understood, or effectively used.

	Organize your data for publication. Before you can describe your data, you must decide how to organize them. This should be planned before hand, so that data organization is a minimal task at the time of publication.

	
	Thoroughly describe

	
	the dataset (e.g., name of dataset, list of files, date(s) created or modified, related datasets)

	
	the people and organizations involved in data collection (e.g., authors, affiliations, sponsor)

	
	Go get an ORCID [https://orcid.org/] if you don’t have one.

	the scientific context (reason for collecting the data, how they were collected, equipment and software used to generate the data, conditions during data collection, spatial and temporal resolution)

	
	the data themselves

	
	how each measurement was produced

	units

	format

	quality assurance activities

	precision, accuracy, and uncertainty

Metadata standards and ontologies are invaluable for supporting data reuse.

	
	Metadata standards tell you

	
	which metadata attributes to include

	how to format your metadata

	what values are allowable for different attributes

	
	Some metadata standards

	
	DataCite [https://schema.datacite.org/] (for publishing data)

	Dublin Core [http://www.dublincore.org/specifications/dublin-core/dcmi-terms/] (for sharing data on the web)

	Minimum Information for any (x) Sequence (MIxS [https://press3.mcs.anl.gov/gensc/mixs/])

	OGC standards [https://www.opengeospatial.org/docs/is] for geospatial data

	
	Ontologies provide standardization for metadata values

	
	Example: Environment Ontology [http://environmentontology.org/] terms for the MIxS standards

	Example: Plant Ontology [http://planteome.org/] for plant tissue types or development stages

	FAIRSharing.org [https://fairsharing.org/] lists standards and ontologies for Life Sciences.

The CyVerse Data Commons supports good data description through

	Metadata templates (remember the DataCite metadata template from yesterday)

	Bulk metadata upload (example dataset [http://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/Zhou_Jander_MaizeLeafMetabolomeGWAS_2019])

	Automatic collection of analysis parameters, inputs, and outputs in the DE.

	Preserve:

	
	
	To be FAIR data must be preserved in an appropriate long-term archive (i.e. data center).

	
	Sequence data should go to INSDC (usually NCBI [https://www.ncbi.nlm.nih.gov/]

	Identify data with value – it may not be necessary to preserve all data from a project

	The CyVerse Data Commons [http://datacommons.cyverse.org/] provides a place to publish and preserve data that was generated on or can be used in CyVerse, where no other repository exists.

	See lists of repositories at FAIRSharing.org [https://fairsharing.org/].

	Github repos can get DOIs through Zenodo [https://guides.github.com/activities/citable-code/].

	
	Be aware of licensing and other intellectual property issues

	
	See licensing information below

	Repositories will require some kind of license, often the least restrictive

	Repositories are unlikely to enforce reuse restrictions, even if you apply them.

	Discover:

	
	Good metadata allows you to discover your own data!

	
	Databases, repositories, and search indices provide ways to discover relevant data for reuse

	
	https://toolbox.google.com/datasetsearch

	https://www.dataone.org/

	FAIRSharing.org [https://fairsharing.org/] lists databases for Life Sciences.

	Integrate:

	
	Data integration is a lot of work.

	Standards and ontologies are key to future data integration

	
	Know the data before you integrate them

	
	Don’t trust that two columns with the same header are the same data

	
	Properly cite the data you reuse!

	
	Use DOIs wherever possible

	Analyze:

	
	Follow open science principles for reproducible analyses (CyVerse, RStudio, notebooks, IDEs)

	State your hypotheses and analysis workflow before collecting data. Tools like OSF [https://osf.io/] allow you to make this public.

	Record all software, parameters, inputs, etc.

FAIR data

How to make data findable, accessible, interoperable, and reusable.

See the FAIR data page.

Open versus Public versus FAIR:

One definition of open: http://opendefinition.org/

FAIR does not demand that data be open.

References and Resources

DataOne best practices [https://www.dataone.org/best-practices]

Center for Open Science [https://cos.io/]

	Licensing information:

	
	Open Data Commons <https://opendatacommons.org/licenses/index.html>-

	Creative Commons [https://creativecommons.org/]

	
	https://choosealicense.com/

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

FAIR Data

	Vocabulary

	
	Metadata

	PID: Permanent Identifier

	GUID: Globally Unique Identifier

	Ontology

	Provenance

	License

	Search Index

	Access protocol

FAIR Principles

In 2016, the |FAIR Guiding Principles|_ for scientific data management and stewardship were published in Scientific Data. Read it. Its short.

	Findable

	
	F1. (meta)data are assigned a globally unique and persistent identifier

	F2. data are described with rich metadata (defined by R1 below)

	F3. metadata clearly and explicitly include the identifier of the data it describes

	F4. (meta)data are registered or indexed in a searchable resource

	Accessible

	
	A1. (meta)data are retrievable by their identifier using a standardized communications protocol

	A1.1 the protocol is open, free, and universally implementable

	A1.2 the protocol allows for an authentication and authorization procedure, where necessary

	A2. metadata are accessible, even when the data are no longer available

	Interoperable

	
	I1. (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.

	I2. (meta)data use vocabularies that follow FAIR principles

	I3. (meta)data include qualified references to other (meta)data

	Reusable

	
	R1. meta(data) are richly described with a plurality of accurate and relevant attributes

	R1.1. (meta)data are released with a clear and accessible data usage license

	R1.2. (meta)data are associated with detailed provenance

	R1.3. (meta)data meet domain-relevant community standard

CARE Principles

The CARE principles for Indigenous Data Governance were drafted at the International Data Week and Research Data Alliance Plenary co-hosted event “Indigenous Data Sovereignty Principles for the Governance of Indigenous Data Workshop,” 8 November 2018, Gaborone, Botswana.

	Collective Benefit

	
	C1. For inclusive development and innovation

	C2. For improved governance and citizen engagement

	C3. For equitable outcomes

	Authority to Control

	
	A1. Recognizing rights and interests

	A2. Data for governance

	A3. Governance of data

	Responsibility

	
	R1. For positive relationships

	R2. For expanding capability and capacity

	R3. For Indigenous languages and worldviews

	Ethics

	
	E1. For minimizing harm and maximizing benefit

	E2. For justice

	E3. For future use

FAIR - TLC

	Traceable, Licensed, and Connected

	
	The need for metrics: https://zenodo.org/record/203295#.XkrzTxNKjzI

Question

Which do you think is the hardest, F, A, I, or R, and why?

Question

What is the best way to cite data?

Question

What are the relative values of a data publication verus a peer-reviewed paper?

Question

What role do ontologies play in FAIR-TLC?

Hands on Exercise - Metadata in CyVerse

	Using metadata in the DE

	iCommands metadata: imeta [https://docs.irods.org/4.2.0/icommands/metadata/]

	example 1: imeta add -C B123 test_metadata value unit

	example 2: imeta add -d B123/0123.txt test_metadata value unit

References and Resources

https://www.nature.com/articles/sdata201618

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Data Management Plans (DMP)

“A data management plan or DMP is a formal document that outlines how data are to be handled both during a research project, and after the project is completed.[1] The goal of a data management plan is to consider the many aspects of data management, metadata generation, data preservation, and analysis before the project begins; this may lead to data being well-managed in the present, and prepared for preservation in the future.”

(Source: https://en.wikipedia.org/wiki/Data_management_plan)

Example DMP

Why bother?

Stick: You have to make one [https://www.nsf.gov/pubs/2019/nsf19069/nsf19069.jsp]

Reviewers definitely look at them, but they may not be enforced.

	Carrot: Make your life easier

	
	Planning for you project makes it run more smoothly

	Avoid surprise costs

Elements of a good DMP

	
	Information about data & data format(s)

	
	data types

	data sources

	analysis methods

	formats

	QA/QC

	version control

	data life cycle

	
	Metadata content and format(s)

	
	format

	standards

	
	Policies for access, sharing, and re-use

	
	funder obligations

	ethical and privacy issues (data justice)

	intellectual property, copyright, citation

	timeline for releases

	
	Long-term storage, data management, and preservation

	
	which data to preserve

	which archive/repository

	
	Budget (PAPPG [https://www.nsf.gov/pubs/policydocs/pappg19_1/pappg_2.jsp#IIC2gvib])

	
	each of the above elements cost time/money

	Personnel time for data preparation, management, documentation, and preservation (including time)

	Hardware and/or software for data management, back up, security, documentation, and preservation (including time)

	Publication/archiving costs (including time)

Not only what, but who (roles).

Extra challenges for collaborative projects.

Machine actionable DMPs

	DMPs describe research methods that will evolve over the course of a project

	to be a useful tool for researchers and others, the content must be updated to capture the methods that are employed and the data that are produced

[image: maDMP]

(Source: https://doi.org/10.1371/journal.pcbi.1006750.g002)

Tools for DMPs

https://dmptool.org/

Exercise: Log in to DMP tools and create a mock DMP.

References and Resources

	NSF Guidelines on DMPs [https://www.nsf.gov/bio/biodmp.jsp]

	https://dmptool.org/general_guidance

	https://dmptool.org/public_templates

	Professional and scholarly societies, e.g., theEcological Society of America http://www.esa.org/esa/science/data-sharing/resources-and-tools/

	DataOne - https://www.dataone.org/best-practices

	Data Carpentry - http://datacarpentry.org/

	The US Geological Survey http://www.usgs.gov/datamanagement/index.php

	Repository registry (and search) service: http://www.re3data.org/

	Your university library

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Data Management Tools

	KNB tools [https://knb.ecoinformatics.org/tools]

	Open Science Framework [https://osf.io/]

	CyVerse Data Commons [https://datacommons.cyverse.org/]

CyVerse Data Commons

	Metadata capability (covered earlier - see Using metadata in the DE

	Managing a shared project on CyVerse [https://cyverse-group-project-quickstart.readthedocs-hosted.com/en/latest/]

	Community Released Data Folders [https://wiki.cyverse.org/wiki/display/DC/Publishing+Data+through+the+Data+Commons]

	DOIs for datasets [https://cyverse-doi-request-quickstart.readthedocs-hosted.com/en/latest/]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

About CyVerse

CyVerse Vision: Transforming science through data-driven discovery.

CyVerse Mission: Design, deploy, and expand a national
cyberinfrastructure for life sciences research and train scientists in
its use.

CyVerse provides life scientists with powerful computational
infrastructure to handle huge datasets and complex analyses, thus
enabling data-driven discovery. Our powerful extensible platforms
provide data storage, bioinformatics tools, image analyses, cloud
services, APIs, and more.

Originally created as the iPlant Collaborative to serve
U.S. plant science communities, the cyberinfrastructure we have built is germane
to all life sciences disciplines and works equally well on data from
plants, animals, or microbes. Thus, iPlant was renamed CyVerse to reflect the broader community now served by our infrastructure. By democratizing access to supercomputing
capabilities, we provide a crucial resource to enable scientists to find
solutions for the future. CyVerse is of, by, and for the community, and community-driven needs
shape our mission. We rely on your feedback to provide the
infrastructure you need most to advance your science, development, and
educational agenda.

CyVerse Homepage: http://www.cyverse.org

Evolution of CyVerse

[image: evolcyverse]

CyVerse is an NSF-funded project. The project began in 2008 as ‘iPlant’ with the mission of ‘empowering a new plant biology’. Funding was renewed in 2013 for another 5 years with the new mission of ‘cyberinfrastructure for life sciences’. In 2016 the name of the project was changed from ‘iPlant’ to ‘CyVerse’ to reflect its role in all life scieneces, not just plants. In 2018 CyVerse was renewed for another 5 years with our current mission: ‘to design, deploy, and expand a national Cyberinfrastructure for Life Sciences research, and to train scientists in its use’.

Over the past 10 years CyVerse priorities have focused on genomics and transcriptomics tools that were needed to deal with the huge increase in high-throughput seqeuncing data. While that is still a priority, CyVerse has since expanded to include image and geospatial analysis tools. CyVerse is built for data.

What is Cyberinfrastructure?

	Cyberinfrastructure is a combination of

	
	platforms, tools and datasets researchers need to do their work

	storage and compute hardware necessary for modern analyses

	people who provide training and support

The CyVerse cyberinfrastructure can be thought of in layers. The bottom layer (on which everything else is built) consists of the hardware resources. On top of that are the services necessary to make a functional system. The next layer represents extensible services, or those parts of the system that may be adopted and used by thrid parties. Most users will interact primarily with the top layer which represents the various analysis and distribution platforms. While the bottom layers are the most flexible, the top layers are the most user-friendly.

[image: layer cake]

User Portal [https://user.cyverse.org]

The CyVerse user portal allows users to manage their accounts, subscriptions and events in a single place. Some things you can do here include:

	Create and manage your CyVerse account

	
	Reset your password

	Add an email address to your account

	Change your name or username

	Change your institution, department, position

	Change your CyVerse subscriptions

	Manage access to CyVerse platforms/services

	
	Some CyVerse services (such as Atmosphere) have additional restrictions and access must be ‘turned on’.

Manage workshops you’ve attended or hosted

Access ‘Powered by CyVerse’ projects

	User portal forms

	
	Request a Data Store allocation increase

	Request a community released data folder

	Request a workshop or webinar

	Reserve Atmosphere cloud resources for workshops or classes

	Request an External Collaborative Partnership (ECP)

	Get Powered by CyVerse

Data Store [https://de.cyverse.org/de/]

[image: datastorelogo]

Securely store data for active analyses or sharing with your collaborators.

	
	Upload, download and share your data

	
	DE simple upload/download. Convenient but not good for large files.

	Cyberduck is a third-party software with graphic interface for transferring data. Available for Mac and Windows.

	iCommands is more powerful/flexible, good for large transfers but requires some command line knowledge

	Data limit of 100 GB (can request increase up to 10 TB)

	Data storage is integrated into the Discovery Environment (where analyses are run).

	Share your data with collaborators

	Data Store guide [https://cyverse-data-store-guide.readthedocs-hosted.com/en/latest/]

Discovery Environment [https://de.cyverse.org/de/]

[image: DElogo]

Use hundreds of bioinformatics apps and manage data in a simple web interface.

	Provides graphic interface for bioinformatics tools for scientists with no command line experience

	
	User extensible. Users can add their own tools and make their own apps.

	
	Share them with collaborators

	Publish them

	VICE (Visual and Interactive Computing Environment) for interactive use of Jupyter notebooks, RStudio and RShiny.

	Integrated with the Data Store for ease of use

	Share your analyses with your collaborators

	DE guide [http://learning.cyverse.org/projects/cyverse-discovery-environment-guide/]

	VICE documentation [https://cyverse-visual-interactive-computing-environment.readthedocs-hosted.com/en/latest/index.html]

Atmosphere [https://atmo.cyverse.org/application/images]

[image: atmologo]

Create a custom cloud-based scientific analysis platform or use a ready-made one for your area of scientific interest.

	Cloud computing for life sciences

	100s of pre-built images

	Fully customize your software setup

	Choose (or build) an image that best suits your needs

	Atmosphere guide [https://cyverse-atmosphere-guide.readthedocs-hosted.com/en/latest/]

Bisque [https://bisque.cyverse.org/client_service/]

[image: bisquelogo]

Bio-Image Semantic Query User Environment for the exchange and exploration of image data

	Exchange, explore, and analyze biological images and their metadata.

	Image data analysis and management

	Bisque manual [https://wiki.cyverse.org/wiki/display/BIS]

DNA Subway [https://dnasubway.cyverse.org/]

[image: dnasubwaylogo]

Teach classroom-friendly bioinformatics for genome analysis, DNA Barcoding, and RNA-Sequencing.

	Educational tool

	
	Ties together key bioinformatics tools and databases to

	
	assemble gene models

	investigate genomes

	work with phylogenetic trees

	analyze DNA barcodes

	Analyze your own data or the sample data provided

	DNA Subway guide [https://cyverse-dnasubway-guide.readthedocs-hosted.com/en/latest/]

Data Commons [http://datacommons.cyverse.org/]

[image: DClogo]

The Data Commons provides services to manage, organize, preserve, publish, discover, and reuse data.

	Access discoverable and reusable data with metadata features and functions

	Browse Community Released Data and data curated by CyVerse

	Easily publish data to the NCBI or directly to the CyVerse Data Commons

Science APIs

[image: sciAPIslogo]

Programmatic access to CyVerse services

	Science-as-a-service platform

	Define your own compute, and storage resources (local and CyVerse)

	Build your own app store of scientific codes and workflows

	Agave API for HPC

	Terrain API for DE

SciApps [https://www.sciapps.org/]

A cloud-based platform for building and sharing reproducible bioinformatics workflows across distributed computing and storage systems

	Build branching analysis workflows

	SciApps guide [https://cyverse-sciapps-guide.readthedocs-hosted.com/en/latest/index.html]

Powered by CyVerse [http://www.cyverse.org/powered-by-cyverse]

[image: PBlogo]

Third-party projects can leverage the CyVerse cyberinfrastructure components to provide services to their users.

	Some ‘Powered by CyVerse’ projects you may be familiar with

	
	CoGe

	BioExtract Server

	CIPRES

	ClearedLeavesDB

	Digital Imaging of Root Traits (DIRT)

	Federated Plant Database Initiative for Legumes (LegFed)

	Galaxy

	Genomes to Fields

	iMicrobe

	Integrated Breeding Platform

	SoyKB

	TERRA-REF

	TNRS- Taxonomic Name Resolution Service

The CyVerse Learning Center [https://learning.cyverse.org/en/latest/#]

[image: LClogo]

The CyVerse Learning center is a beta release of our learning materials in the popular “Read the Docs” formatting.

	We are transitioning our learning materials into this format to make them easier to search, use, and update.

The CyVerse Wiki [https://wiki.cyverse.org]

This collaborative documentation site is used to record important information about CyVerse, its products and services, and community collaborators and their projects.

	Anyone with a CyVerse account is welcome to help out.

	User have their own spaces and can add content

	
	Much of the CyVerse documentation has been moved the Learning center but some things will continue to be in the Wiki

	
	DE app documentation

	Many tutorials

Intercom

[image: intercomlogo]

Intercom is our live-chat user support app. You will find the Intercom ‘smiley’ logo in the bottom right corner of the Discovery Environment, Atmosphere, the Wiki and the user portal.

Funding and Citations

CyVerse is funded entirely by the National Science Foundation under
Award Numbers DBI-0735191, DBI-1265383 and DBI-1743442.

Please cite CyVerse appropriately when you make use of our resources,
CyVerse citation
policy [http://www.cyverse.org/acknowledge-and-cite-cyverse]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Accessing Data Store

[image: DS_icon]

The Data Store is more than a place to save your files – it is a way to manage the life cycle of your data. From creation to publication to beyond, there are a number of practices to ensure that the integrity and value of your data are maintained.

In this lesson we will practice other ways of accessing the Data Store, plus how to make your data publicly available.

Discovery Environment Interface

DE interface allows uploading and downloading one file at a time. It works best for transfer of small files < 2GB.

From the DE interface, go to “Upload -> Simple Upload from Desktop” to upload a file. For downloading a file go to “Download -> Simple Download”.

Sample data for practice
/iplant/home/shared/iplantcollaborative/example_data/FOSS_2020/foss_sampledata

iCommands

iCommands is a collection of tools developed by the iRODS project [https://irods.org/], which is the technology that supports the CyVerse Data Store. Using iCommands is the most flexible way to interact with the Data Store.

iCommands provides command line access to the Data Store, so it can be included in scripts to automate data upload and download. Unfortunately, the latest iCommands cannot be installed on most Windows operating systems, but participants with Windows computers can do this exercise using Atmosphere (which will be covered in tomorrow’s lessons). If you are running Window 10, you can run iCommands on the Linux subsystem [https://wiki.cyverse.org/wiki/display/DS/Setting+Up+iCommands#SettingUpiCommands-other].

Follow along with the Using iCommands [https://cyverse-data-store-guide.readthedocs-hosted.com/en/latest/step2.html] quick start to:

	Install and configure iCommands

	Upload a file to your home folder (iput)

	Download a file to your desktop (iget)

In addition, we will use iCommands to:

	Create a new folder in your home directory (imkdir)

$ imkdir newdir

	Move a file from your home directory to the new folder (imv)

$ imv file_name newdir/file_name

	Navigate to a public folder (icd)

$ icd /iplant/home/shared/imicrobe/camera

	List files in a directory

$ ils

	Copy a public file to the newly created folder (icp)

$ icp camera_projects/CAM_PROJ_AcidMine.csv /iplant/home/$username/newdir/CAM_PROJ_AcidMine.csv
$ icd /iplant/home/$username/
$ils newdir
$ils -A newdir

Here is the full documentation of iCommands [https://docs.irods.org/master/icommands/user/].

CyberDuck

Cyberduck is a free 3rd party software tool that allows you to drag-and-drop files between your local computer (or a remote server) and the Data Store. Cyberduck can also be used to rename files, and browse other shared or public Data Store locations.

Follow along with the CyberDuck [https://cyverse-data-store-guide.readthedocs-hosted.com/en/latest/step1.html] quick start to:

	Install and configure CyberDuck

	Upload a file to your CyVerse home directory

	Navigate to a public folder

WebDAV

WebDAV is an extension to the HTTP protocol that allows users to remotely edit and manage files. CyVerse has added support for WebDAV to the Data Store. This means users can access their home and public folders in the CyVerse Data Store from their local computers using web browsers and other WebDAV enabled applications such as common operating system file managers. With WebDAV, users can copy files between local computer and the Data Store as easily as if they were copying them between two folders on their computer.

Follow along with the WebDAV [https://cyverse-data-store-guide.readthedocs-hosted.com/en/latest/step5.html] quick start to access CyVerse data via WebDAV services.

Which method to choose?

	Criteria

	Cyberduck

	iCommands

	DE Interface

	DE WebDAV

	Ease of use

	2

	4

	1

	3

	Setup required?

	Yes

	Yes

	No

	No

	Works best for?

	Multiple small files

	Large files

	Small files < 2GB

	Small files < 2GB

	GUI support?

	Yes

	No

	Yes

	Yes

	Command-line support

	Yes

	Yes

	No

	Yes

	Allows to open/edit files?

	No

	No

	Yes

	Yes

CyVerse Data Commons

The Data Commons provides services throughout CyVerse to manage, organize, preserve, publish, discover, and reuse data.

Data Publication

Through the Data Commons, you can submit data directly to NCBI’s SRA [https://learning.cyverse.org/projects/sra_submission_quickstart/en/latest/index.html] or WGS [https://wiki.cyverse.org/wiki/pages/viewpage.action?pageId=34834057], or request a Digital Object Identifier (DOI) [https://cyverse-doi-request-quickstart.readthedocs-hosted.com/en/latest/] for your dataset.

For data that are not stable or permanent, you can request a Community Released Folder [https://wiki.cyverse.org/wiki/display/DC/Preparing+Community+Released+Data+Folders].

For an overview see Publishing data on the CyVerse Data Commons [https://wiki.cyverse.org/wiki/display/DC/Publishing+Data+through+the+Data+Commons].

Additional Resources

Data Store Manual [https://wiki.cyverse.org/wiki/display/DS/Data+Store+Table+of+Contents]

Create a public link via the DE [https://cyverse-data-store-guide.readthedocs-hosted.com/en/latest/step4.html]

DOI request quick start [https://learning.cyverse.org/projects/cyverse-doi-request-quickstart/en/latest/index.html]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Discovery Environment - Data Management

[image: DE_icon]

DE Basics Walkthrough

	Log in at https://de.cyverse.org/

[image: DE_blank]

Data Window

	Open the data window and upload a file:

[image: DE_data_upload]

	Create a new text file [https://wiki.cyverse.org/wiki/display/DEmanual/Creating+New+Files+and+Folders] and share it with someone in the class:

[image: DE_dots_menu]

	Download [https://wiki.cyverse.org/wiki/display/DEmanual/Downloading+Files+and+Folders] the shared file.

Using metadata in the DE

	Using metadata in the DE [https://wiki.cyverse.org/wiki/display/DEmanual/Using+Metadata+in+the+DE] :

[image: DE_metadata]

	Search [https://wiki.cyverse.org/wiki/display/DEmanual/Searching+for+Data+Items] for data in the DE:

[image: DE_search]

	Try a simple search for the word “maize”

	Try an advanced search for attribute = subject and value = maize

	
	Other options to be covered on Tuesday:

	
	bulk metadata application [https://wiki.cyverse.org/wiki/display/DEmanual/Using+Metadata+in+the+DE#UsingMetadataintheDE-Addingbulkmetadatatomultiplefilesorfolders]

	metadata templates [https://wiki.cyverse.org/wiki/display/DEmanual/Using+Metadata+in+the+DE#UsingMetadataintheDE-Usingmetadatatemplates]

Advanced Metadata Usage

The Data Commons provides advanced metadata features in the Discovery Environment, including:

	metadata templates [https://wiki.cyverse.org/wiki/display/DEmanual/Using+Metadata+in+the+DE#UsingMetadataintheDE-Usingmetadatatemplates]

Exercise:
- Open the DE
- Apply a Plant Ontology template to a folder.
- Apply an ontology term to a file or folder.

	bulk metadata application [https://wiki.cyverse.org/wiki/display/DEmanual/Using+Metadata+in+the+DE#UsingMetadataintheDE-Addingbulkmetadatatomultiplefilesorfolders]

Exercise:
1. Copy the B123 file to your home directory
- Using icommands:

$ icd /iplant/home/$username
$ icp -r /iplant/home/rwalls/B123 B123
$ ils

	In the DE:

	create a folder in your home directory called B123

	Move into B123

	Upload >> Import from URL…

	paste each of the URLs below into a slot. This must be done in two batches.

https://raw.githubusercontent.com/CyVerse-learning-materials/foss-2020/master/slides/B123/012.txt
https://raw.githubusercontent.com/CyVerse-learning-materials/foss-2020/master/slides/B123/123.txt
https://raw.githubusercontent.com/CyVerse-learning-materials/foss-2020/master/slides/B123/234.txt
https://raw.githubusercontent.com/CyVerse-learning-materials/foss-2020/master/slides/B123/345.txt
https://raw.githubusercontent.com/CyVerse-learning-materials/foss-2020/master/slides/B123/456.txt
https://raw.githubusercontent.com/CyVerse-learning-materials/foss-2020/master/slides/B123/567.txt
https://raw.githubusercontent.com/CyVerse-learning-materials/foss-2020/master/slides/B123/678.txt
https://raw.githubusercontent.com/CyVerse-learning-materials/foss-2020/master/slides/B123/789.txt
https://raw.githubusercontent.com/CyVerse-learning-materials/foss-2020/master/slides/B123/Rice_metadata.csv

2. Apply metadata
- In the DE apply the DE apply metadata to the contents of B123

	Browse to B123

	View the metadata for one of the files using the Metadata menu or the three dots (it should be blank)

	View the contents of the file Rice_metadata.csv

	Browse back to your home directory

	Check the box next to B123

	Select Metadata > Apply Bulk Metadata

	Select the file B123/Rice_metadata.csv

	Browse back to B123

	View the metadata of the different files in the directory

3. Advanced search
- Click on the search magnifying glass
- Click +
- Change File Name to Metadata
- Under Attribute, type treatment, under Value type cold
- Hit Search

Additional resources

	DE Guide [https://learning.cyverse.org/projects/discovery-environment-guide/en/latest/]

	DE Manual [https://wiki.cyverse.org/wiki/display/DEmanual/Table+of+Contents]

	Using CyVerse for a shared project [https://learning.cyverse.org/projects/cyverse-group-project-quickstart/en/latest/index.html?highlight=group%20project]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Discovery Environment - Data Analysis

[image: DE_icon]

Why use the DE?

	Use hundreds of bioinformatics Apps without the command line

	Executable and interactive modes

	Seamlessly integrated with data and high performance computing – not dependent on your hardware

	Create and publish Apps and workflows so anyone can use them

	Analysis history and provenance – “avoid forensic bioinformatics”

	Securely and easily manage, share, and publish data

Apps Window [https://wiki.cyverse.org/wiki/display/DEmanual/Using+the+Apps+Window+and+Submitting+an+Analysis]

Customizing the Apps window view

[image: DE_switch_view]

Finding Apps

[image: DE_apps_operation]

When adding new apps to the DE, developers have the option of adding the app to a community. Users can join a community in the ‘communities’ menu under the person icon in the top right corner of the DE window. A new category will then be added to the left pane of the ‘Apps’ window called ‘My Communities’. This can be an easy way to find apps related to a specific project and to see when new apps have been added to that project.

[image: DE_communities]

Types of apps

	Executable: user starts an analysis and when the analysis finishes they can find the output files in their ‘Analyses’ folder

	DE: run locally on our cluster

	HPC: labeled as ‘Agave’ in the DE. Run on XSEDE resources at Texas Advanced Computing Center (TACC)

	OSG: run on the Open Science Grid

	Interactive: also called Visual and Interactive Computing Environment (VICE). Allows users to open Integrated Development Environments (IDEs) including RStudio, Project Jupyter and RShiny and work interactively within them.

Launch an executable analysis [https://wiki.cyverse.org/wiki/display/DEmanual/Using+Apps]

[image: DE_word_count]

Analyses window [https://wiki.cyverse.org/wiki/display/DEmanual/Using+the+Analyses+Window]

The analysis window provides the status (submitted, running, failed, completed) of each of your analyses.

[image: DE_analyses]

A variety of information and tasks related to an analysis can be found in the ‘three dots’ menu at the right.

	Relaunch or cancel [https://wiki.cyverse.org/wiki/display/DEmanual/Relaunching%2C+Canceling%2C+and+Deleting+Analyses%2C+Viewing+Analysis+Outputs+and+Info] an analysis

	Troubleshoot an analysis [https://wiki.cyverse.org/wiki/display/DEmanual/Relaunching%2C+Canceling%2C+and+Deleting+Analyses%2C+Viewing+Analysis+Outputs+and+Info]

	Share an analysis [https://wiki.cyverse.org/wiki/display/DEmanual/Sharing+and+Unsharing+an+Analysis] with a collaborator.

Launch an interactive analysis (VICE) [https://learning.cyverse.org/projects/vice/en/latest/]

Visual Interactive Computing Environment VICE introduces graphic user interfaces (GUIs) and common Integrated Development Environments (IDEs) such as Project Jupyter Notebooks & Lab, RStudio, Shiny Apps and Linux Desktop

Additional resources

	DE Guide [https://learning.cyverse.org/projects/discovery-environment-guide/en/latest/]

	DE Manual [https://wiki.cyverse.org/wiki/display/DEmanual/Table+of+Contents]

	VICE Manual [https://learning.cyverse.org/projects/vice/en/latest/]

	Using CyVerse for a shared project [https://learning.cyverse.org/projects/cyverse-group-project-quickstart/en/latest/index.html?highlight=group%20project]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/] Learning Center Home [http://learning.cyverse.org/]

Discovery Environment - Tools & Apps

	CyVerse tool: Software program that is integrated into the back end of the DE for use in DE apps

	

	CyVerse app: graphic interface of a tool made available for use in the DE

The (containerized) tool must be integrated into the Cyverse DE first. Then an app (interface) can be built for that tool.

Tool Integration into the DE

Building an App for Your Tool

You can build an app for any tool that:

	is private to you

	is shared with you

	is public

Note

It is a good idea to check to see if the tool you want is already integrated before you start. The tool my be there already and you can build an app using it.

In the ‘Manage Tools’ window search for ‘porechop’ in the search bar at the top of the window. Select the porechop public tool and choose ‘Use in App’ from the ‘Tools’ menu

[image: useinapp]

This will open the ‘Create App’ window. The tool to use will be pre-populated. Choose an informative app name and description (eg. tool name and version). Apps features can be added by dragging the feature from the left pane into the center pane.

[image: draglefttocenter]

You can edit the details of an app feature by selecting it in the center pane and editing in the right pane. Divide the app into sections appropriate for that tool (input, options and output are usually sufficient sections for simple apps).

[image: adddetailright]

For each option you add, you will need to specify what the option is, the flag (if there is one) and whether that option is required. If an option is not required be sure to check the ‘exclude if nothing is entered’ box. For tools that have positional agruments (no flags, eg. -z) you can modify the order of the commands by clicking the ‘command line order’ at the top of the window.

[image: commandlineorder]

As you add options to your app you will see in the bottom pane (command line view) what the command would look like on the command line.

[image: commandlineexp]

Although it is best to add all of the options for your tool, as it makes the app the most useful, you can expose as many or as few options as you like (as long as you add all the required options). Once you have finished adding options click save and close your app.

Now test your app with appropriate data. Your app can now be found in the ‘My apps in development’ category of the ‘Apps’ window (which displays by default).

[image: myappsdev]

Once you know your app works correctly you can share or publish it as you wish.
Public apps must have example data located in an appropriately named folder here:

/iplant/home/shared/iplantcollaborative/example_data

All public apps also have a brief documentation page on the CyVerse Wiki [https://wiki.cyverse.org/wiki/display/DEapps/List+of+Applications]

To publish your app click on ‘Share’ at the top of the ‘Apps’ window and select ‘Make public’. You will need to supply a:

	Topic (eg. genomics)

	Operation (eg. assembly)

	location of the example data

	brief description of inputs, required options and outputs

	link to CyVerse Wiki documentation page

	link to docmentation for the tool (provided by the developers)

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

Use this example to ensure that links open in new tabs, avoiding
forcing users to leave the document, and making it easy to update links
In a single place in this document

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Discovery Environment - VICE

CyVerse data science workbench, the Discovery Environment [https://de.cyverse.org/de/], includes a feature called VICE (Visual Interactive Computing Environment) [https://learning.cyverse.org/projects/vice/en/latest/]

VICE uses Docker containers to launch interactive programs, like RStudio, R Shiny Apps, Project Jupyter, Data Mining, and WebGL Applications that can be run in a browser. These programs allow users to interact with their data and do analyses in one place (i.e. view outputs in the same window code is executed). Researchers using VICE can explore their datasets interactively in the Discovery Environment while using the Data Store.

While VICE does require some coding knowledge, it is for anyone who wants to interact with data in an iteritative way.

Visual Interactive Computing Environment

	You can launch existing VICE images from the DE, or integrate your own using the Manage Tools.

	VICE apps are containers, and your data are in the container until you move them off of it. Your results will be saved when the app terminates in your /username/analyses directory, unless you specify that the app results be saved elsewhere.

Create a VICE app

1. Find the Docker image of your interactive tool/software of your interest

We will integrate RStudio as a VICE app in DE. There is a Docker image available for RStudio on Dockerhub.

Note

If there is no Docker image available for your tool of interest, then you would either find a Dockerfile which you can use to build the Docker image for your tool of interest or create one. You can get more help with either of that from here [https://learning.cyverse.org/projects/container_camp_workshop_2019/en/latest]

2. Test the Docker image locally on your computer (Optional but recommended)

This is optional but highly recommended step to confirm that the Docker image for your tool of interest is working as expected.

2.1 Pull the image from Dockerhub

$ docker pull cyversevice/rstudio-verse:3.6.0

You could also use Play with Docker [https://labs.play-with-docker.com/], which is a free resource to test and run the Docker container.

2.2 Sample run

$ sudo docker run --rm -v /$HOME:/app --workdir /app -p 8787:80 -e REDIRECT_URL=YOUR_IP_ADDRESS:8787 cyversevice/rstudio-verse:3.6.0

In your browser address bar, type YOUR_IP_ADDRESS:8787 to access RStudio

Note

The username and password for Rstudio is rstudio and rstudio1 respectively

Once you can open the Rstudio, then you are ready to integrate the tool in DE

3. Add tool in CyVerse Discovery Environment

3.1 Log-in to CyVerse Discovery Environment and click on the “Apps” window

3.2 Click “Manage Tools” -> “Tools” -> “Add Tool” and fill the details for your Docker image

Fill out the following details

Tool-Name: FOSS-Rstudio
Description: RStudio VICE app
Version: 3.6.0
Type: interactive
Image Name: cyversevice/rstudio-verse
Docker Hub URL: https://hub.docker.com/repository/docker/cyversevice/rstudio-verse
Tag: 3.6.0
Working Directory: /home/rstudio
Port Number: 80

[image: add-tool-vice-1]

3.3 Create a VICE app

Click on the “Apps” window. Click “Apps” -> “Create New”

[image: create-app-vice-1]

Note

For VICE apps, make sure to check “Do not pass this argument to command line”

Example data: /iplant/home/shared/iplantcollaborative/example_data/FOSS_2020/vice_exampledata

Version control using Git within RStudio

Step1: Make a new repo on GitHub

	Create a New repository on GitHub. Click the green “New” button to create a new repo. Enter the name of the repo and check initialize this repo with a README file. Click “Create Repository” button.

[image: create-repo]

Step2: Clone the new GitHub repo

	From Github, copy the repo URL via the green “Clone or Download” button.

	In RStudio, start a new project. File > New Project > Version Control > Git. Paste the GitHub URL in the “repository URL”.

	Enter the name of the “project directory” which should be same as the name of your GitHub repo.

	Click “Create Project”.

Step3: Push your changes to GitHub

	Make some changes (to README file or add a new code)

	Click on Git (Check Git tab on upper right corner of your RStudio window)

	Check the files that you want to commit. Click commit and enter a commit message on the next window.

	After you commit, it will promot you to set your account’s default identity. Go to terminal and configure your git user name and email using the following commands. You should be able to commit without any problems after you confgure.

	git config –global user.email “you@example.com”

	git config –global user.name “Your Name”

	To push the changes to the remote GitHub repository press the Push button on the upper right corner of the commit window. You will be prompted to enter the username and password of your GitHub account.

[image: git-rstudio]

Sharing VICE apps with collaborators

You can share your VICE workspace with colleagues (with a CyVerse account) who can see and edit your notebooks, logs, and outputs.

	To share your workspace

[image: vice-share-3]

	Opening workspaces shared with you

[image: vice-share-6]

[image: vice-share-7]

Specific instructions for launching VICE applications

-Jupyter lab [https://learning.cyverse.org/projects/vice/en/latest/user_guide/quick-jupyter.html]

-Rstudio [https://learning.cyverse.org/projects/vice/en/latest/user_guide/quick-rstudio.html]

-Rshiny [https://learning.cyverse.org/projects/vice/en/latest/user_guide/quick-rshiny.html]

List of Discovery Environment VICE apps [https://learning.cyverse.org/projects/vice/en/latest/vice_apps/examples.html]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Introduction to Cloud Computing

The simplist way to think of cloud is that its like a laptop or desktop computer that you connect to remotely. In more granular applications, cloud is a way of submitting a single task to a computer or a set of computers on demand without having to host them or keep them running. Cloud services can also be optimized to run many machines in parallel for large cluster-like tasks, similar to what is done using High Performance Computing.

There are three major private cloud providers: Amazon Web Services (AWS) [https://aws.amazon.com/], Google Cloud Platform (GCP) [https://cloud.google.com/gcp], and Microsoft Azure [https://azure.microsoft.com/en-us/]. These services cost money to use. They do provide free credits to researchers (GCP [https://edu.google.com/programs/credits/faqs/?modal_active=none], AWS [https://aws.amazon.com/research-credits/faq/], Azure [https://www.microsoft.com/en-us/research/academic-program/microsoft-azure-for-research/]) with short applications.

The big cloud providers have been replicating publicly owned data sets, e.g. 40+ years of NASA and European Space Agency (ESA) earth observation system data [https://aws.amazon.com/earth/], on their cloud-hosted data storage services in the hope that researchers and businesses will pay to use these data by doing cloud computing on them. NASA recently announced a plan [https://earthdata.nasa.gov/eosdis/cloud-evolution] to move hundreds of PBs of its data to AWS.

Some cloud services are free, like Google’s Earth Engine [https://earthengine.google.com/], others have limited sandboxes which are useful for training, but may not fit your needs for larger scale data analyses. Launching IDEs like Jupyter Notebooks or RStudio in cloud is possible with platforms like MyBinder [https://mybinder.org/] and CoLab [https://colab.research.google.com/].

There are also options where your institution can stand up a cloud service on its own hardware: Open Stack [https://www.openstack.org/] and VMWare [https://www.vmware.com/]. CyVerse and XSEDE operate multiple OpenStack clouds which they provide as a service called Atmosphere (CyVerse) [https://atmo.cyverse.org/] and Jetstream (XSEDE) [https://use.jetstream-cloud.org/] free to researchers.

We will be focusing the workshop time on the applications of ‘containers’ like Docker [https://www.docker.com/] and Singularity [https://sylabs.io] which are a way of taking your research and running analyses on ANY cloud providor. The rapid development of containers and container orchestration is due to the rise of the cloud. The utility of containers to researchers in the areas of sharing and reproducible research are fortunate benefits.

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Atmosphere

CyVerse operates a cloud service called Atmosphere [http://www.cyverse.org/atmosphere]. Users can request up to 5,000 allocation units [units are hours (hr)] per month. E.g. a 1-core instance uses 1 AU/hr, a 4-core instance uses 4 AU/hr, and a 16-core instance uses 16 AU/hr. Allocations are automatically reset to 128 AU on the 1st of each month.

Some things to remember about the platform

	Allocation Units can be requested each month, but expire at the end of the month. Users can request more AU by clicking the Request More Resources button in the Atmosphere UI. You can also get help by asking questions in the Intercom (blue button in the lower right of the CyVerse website pages).

	Don’t leave VMs running that aren’t being used (be a good data science neighbor and free resources for others).

Virtual Machines on Atmosphere or Jetstream

Provision VM

[image: atmo_resources]

[image: atmo_request]

Login

Log into CyVerse Atmosphere [http://atmo.cyverse.org/]

Atmosphere Manual [https://cyverse.github.io/atmosphere-guides/]

Alternately, log into XSEDE Jetstream [https://use.jetstream-cloud.org/application]

Fill in your username and password and click “LOGIN”

Create a Project

This is something you only need to do once.

	Click on the “Projects” tab on the top and then click “CREATE NEW PROJECT”

	Enter a name, e.g. “FOSS2019” into the Project Name field.

	the Description can be something complex and long (like an extended abstract, or tutorial), or something short like “CyVerse FOSS 2019”.

	Select the newly created project

Start a new Instance

From your Project folder, you can select “New” and “Instance”

	Suggest you select a featured image with a Graphic User Interface (GUI).

Suggested Atmosphere Image(s):

Atmosphere Image(s):

Here are the tested Ubuntu images.

Warning: The latest version of Ubuntu (18.04) may not have current packages for some software.

	Image Name

	Version

	Description

	Link

	Ubuntu 18.04 GUI

	1.0

	Ubuntu 18.04 GUI XFCE Base

	Image [https://atmo.cyverse.org/application/images/1556]

	Ubuntu 18.04 non-GUI

	1.0

	Ubuntu 18.04 non-GUI Base

	Image [https://atmo.cyverse.org/application/images/1552]

	Find the “Ubuntu 18.04” image, click on it

	Give it a short name that is distinct “my_first_vm”

	Select ‘tiny1 (CPU: 1, Mem: 4GB, Disk: 30GB)’. Because this is your first attempt at provisioning a virtual machine it doesn’t need to be a workhorse (yet).

	Leave rest of the fields as default.

	Wait for it to become active

	Be Patient (but not too patient - if it takes >10 minutes the system may be at capacity, if you’re trying to launch a large or extra large VM, try something smaller).

	You can click on your new instance to get more information.

Accessing the Shell

Once the instance is active, you can access it via ssh or by using the Web Shell provided by Atmosphere.

	Click “Open Web Shell”, or, if you know how to use ssh,

you can ssh in with your CyVerse username on the IP address of the machine

ssh CyVerseUserName@<INSTANCE-IP-ADDRESS>

You should see something like this

Welcome to Ubuntu 18.04.2 LTS (GNU/Linux 4.4.0-81-generic x86_64)

 Get cloud support with Ubuntu Advantage Cloud Guest:
 http://www.ubuntu.com/business/services/cloud

155 packages can be updated.
0 updates are security updates.

*** System restart required ***
Welcome to
 _ _ _
 / \ | |_ _ __ ___ ___ ___ _ __ | |__ ___ _ __ ___
 / _ \| __| '_ ` _` \ / _ \/ __| '_ \| '_ \ / _ \ '__/ _ \
 / ___ \ |_| | | | | | (_) __ \ |_) | | | | __/ | | __/
/_/ ___|_| |_| |_|___/|___/ .__/|_| |_|___|_| ___|

cyverse_username@vm142-39:~$

Note, this instance is running an older version of Ubuntu 18.

A good practice before installing any new software is to run:

sudo apt-get update && sudo apt-get upgrade

After the new updates are installed you can reboot the machine from terminal or from the Atmosphere UI

sudo reboot

If you’re using the Web Shell, the instance will exit. Wait a few minutes for the instance to reboot and refresh the screen.

Note

To access the Clipboard in an Apache Guacamole Web Shell:

	Open Clipboard and virtual keyboard
- On a standard keyboard: ctrl + alt + shift key
- On a MAC OS X keyboard: control + command ⌘ + shift key

	Select your text or paste text into the clipboard window.

	Close the Clipboard window by selecting control + command ⌘ + shift keys again

	Right click with your mouse or double tap fingers on touchpad to paste in the web shell or Desktop

Suspending an instance

	When you’re done using an instance it is wise to ‘Suspend’ the instance in the Actions.

	This will kill any process that is still running.

	Your data and all of your programs will be fine. It is however wise to move your data back onto your DataStore or back it up somewhere else so it will be available.

	Suspending the instance will leave it ready for reuse when you want to “resume” working on it.

	You will not be charged any AU while the instance is suspended.

Deleting your instance

	To completely remove your instance, you can select the “delete” buttom from the instance details page.

	This will open up a dialogue window. Select the “Yes, delete this instance” button.

	It may take Atmosphere a few minutes to process your request. The instance should disappear from the project when it has been successfully deleted.

Imaging an instance

The use of Docker and Singularity take a lot of the problems out of building unique software stacks on cloud - but sometimes these cannot be avoided.

	Have you created a unique software stack that you need to launch on a larger number of future instances?

	Does it take a long time to compile your software stack each time you launch a new instance?

	Only create images from the smallest possible versions of your instance. A larger imaged instance cannot be run on a smaller instance.

To request that your instance be imaged click the “Image” button from Actions.

Note

It is advisable to delete the machine if you are not planning to use it in future to save valuable resources. However if you want to use it in future, you can suspend it.

If you want to keep the instance for a future project, you can also “shelve” the instance. It will take a longer period of time to resume a shelved instance.

EZ Installation of Project Jupyter

We install Project Jupyter (Notebooks and Lab) using the Anaconda distribution [https://www.anaconda.com/]. Within the Anaconda distribution is the conda package manager which can be used to both build and install software.

Anaconda is different than a basic Python installation. It serves as both a package manager and an environment. While this has many benefits, it also adds some complexity to running your Python environments. Still confused? Read about the myths and misconceptions of Anaconda [http://jakevdp.github.io/blog/2016/08/25/conda-myths-and-misconceptions/].

For more details about installing software on Atmosphere visit the CyVerse Data Science Quickstart Tutorial [https://cyverse-ez-quickstart.readthedocs-hosted.com/en/latest/] or the Jetstream EZ Tutorial [https://iujetstream.atlassian.net/wiki/spaces/JWT/pages/348586006/Jetstream+Atmosphere+EZ+tools]. There are instructions for ez installation of Docker, Singularity, and Anaconda.

If you’re on an instance which already has Anaconda installed, you’ll still need to re-run ez to restart the Anaconda virtual environment.

	Install Anaconda with Python3 (ez comes preloaded on featured instances on Atmosphere and Jetstream) by typing:

ezj

	Once the installation completes, you’re done! A Jupyter Notebook should now be running on the VM.

[image: notebook_terminal]

	Click the link showing the notebook URL (notice this is not the localhost:8888).

Note

To install your own packages you’ll need to change ownership of the Anaconda installation:

sudo chown $(id -u):$(id -g) /opt/anaconda3 -R

Down version Python 3.6 to 3.5

To use GDAL you may need to reverse version Python to an earlier version

Kernel installation instructions [https://ipython.readthedocs.io/en/stable/install/kernel_install.html/]

python -m pip install ipykernel

conda create -n ipykernel_py35 python=3.5 ipykernel
source activate ipykernel_py35 # On Windows, remove the word 'source'
python -m ipykernel install --user

List of Jupyter Kernels [https://github.com/jupyter/jupyter/wiki/Jupyter-kernels/]

R

conda install -c r irkernel

JavaScript

sudo apt-get install nodejs-legacy npm ipython ipython-notebook
sudo npm install -g ijavascript
ijsinstall

Ruby

Add Jupyter PPA

sudo add-apt-repository ppa:chronitis/jupyter -y
sudo apt-get update
sudo apt-get install -y iruby

Python2 Kernel

conda create -n ipykernel_py2 python=2 ipykernel
source activate ipykernel_py2
python -m ipykernel install --user
source deactivate ipykernel_py2
conda activate base # switch back to base Python3 environment

Julia Kernel

First, install Julia [https://julialang.org/downloads/], here we are installing v0.6.

Once Julia as been installed, run julia from the prompt.

wget https://julialang-s3.julialang.org/bin/linux/x64/0.6/julia-0.6.3-linux-x86_64.tar.gz
tar xvzf julia-0.6.3-linux-x86_64.tar.gz
sudo mv julia-d55cadc350/ /opt/julia
rm -rf julia-0.6.3-linux-x86_64.tar.gz
sudo ln -s /opt/julia/bin/julia /usr/local/bin/julia
julia

Now, from Julia prompt install the iJulia Kernel.

Pkg.add("IJulia")
ENV["JUPYTER"] = "/opt/anaconda3/bin/jupyter"
Pkg.add("Feather")
Pkg.add("DataFrames")
Pkg.add("NamedArrays")

Bash Kernel

pip install bash_kernel
python -m bash_kernel.install

Geospatial dependencies

conda install -c conda-forge gdal

sudo add-apt-repository -y ppa:ubuntugis/ubuntugis-unstable
sudo apt update
sudo apt install gdal-bin python-gdal python3-gdal libgdal1-dev

Script of Scripts

Official documentation [https://vatlab.github.io/sos-docs/#runningsos]

pip install sos
pip install sos-notebook
python -m sos_notebook.install

Installing RStudio-Server

RStudio can be installed in several ways.

First, you can follow the RStudio-Server instructions for Linux [https://www.rstudio.com/products/rstudio/download-server/]

Second, you can use Docker (following the same ez documentation [https://cyverse-ez-quickstart.readthedocs-hosted.com/en/latest/index.html] as for Anaconda). We suggest using containers from Docker Hub Rocker [https://hub.docker.com/r/rocker/geospatial/] on the instance.

ezd
sudo usermod -aG docker $USER
exit
docker pull rocker/geospatial
docker run -d -p 8787:8787 rocker/geospatial

Third, you can use Anaconda [https://cyverse-ez-quickstart.readthedocs-hosted.com/en/latest/rstudio.html]

Here we use ezj to install both Anaconda (Jupyter) and R

ezj -R

This will trigger the Ansible playbook to install r-base, r-essentials, and a few other commonly used R Data Science packages.

After ezj -R has finished, you can install RStudio-Server

Install these misc. dependencies

export PATH="/opt/anaconda3/bin":$PATH
sudo chown $(id -u):$(id -g) /opt/anaconda3/ -R
conda update conda
conda install gxx_linux-64
conda install gcc_linux-64

Set Path and install gdebi

sudo apt-get install gdebi-core

Install RStudio-Server with gdebi:

echo "export RSTUDIO_WHICH_R='/opt/anaconda3/bin/R'" >> ~/.bash_profile
wget https://download2.rstudio.org/rstudio-server-1.1.447-amd64.deb
sudo gdebi --non-interactive rstudio-server-1.1.447-amd64.deb

The installation of RStudio-Server is going to fail because we haven’t told it which R to use. Because we are using Anaconda’s installation of R, and not the basic installation of R, we have to reassign RStudio to look for Anaconda

sudo sh -c 'echo "rsession-which-r=/opt/anaconda3/bin/R" >> /etc/rstudio/rserver.conf'
export RSTUDIO_WHICH_R='/opt/anaconda/lib/R/bin/R'
sudo sh -c 'echo "launchctl setenv RSTUDIO_WHICH_R $RSTUDIO_WHICH_R" >> ~/.bash_profile'

Restart the server

sudo rstudio-server start

	You can launch Jupyter Lab by exiting the notebook and typing jupyter lab - but this will allow Lab to only be available on the localhost, with no way to connect from a remote terminal. Exit the notebook by pressing ctrl + c twice, and then start a Jupyter Lab [https://github.com/jupyterlab/jupyterlab].

Hands On

Sateesh’s Atmosphere Exercises [https://snakemake2019.readthedocs.io/en/latest/Atmosphere_Cloud.html]

Note

To ensure your session doesn’t die when you close your terminal use tmux or screen to start your remote sessions and to detach the screen before exiting.

	detach screen: ctrl + b then d

	list tmux sessions: tmux ls

	re-attach screen: tmux attach -t <session id #>

Establishing a Secure Connection

	On the VM start the Lab in terminal (don’t forget to use tmux)

jupyter lab --no-browser --ip=* --port=8888

Option 1: SSH tunnel

You must have the ability to use ssh on your localhost to use this method.

	Start Jupyter

jupyter lab --no-browser --ip=127.0.0.1 --port=8888

	Open a new terminal on your localhost.

ssh -nNT -L 8888:localhost:8888 CyVerseUserName@<IPADDRESS>

Enter your password when prompted.

The terminal should stop responding after this.

	In your browser, open a new tab and go to http://localhost:8888

Option 2: Caddy

You can use this method with tmux in the Web Shell

	Follow the same step #1 above

	In the terminal start a new tmux session. Then copy/paste the following:

echo "$(hostname)
proxy / 127.0.0.1:8888 {
 websocket
 transparent
}
" > Caddyfile
curl https://getcaddy.com | bash -s personal http.nobots
caddy

The Caddyserver [https://caddyserver.com/] will output a secure URL https:// for the Atmosphere VM which you can then connect in a new browser tab.

	Copy / Paste the URL https://vm142-xx.cyverse.org into a new browser tab.

Description of output and results

Congratulations - you’ve got a Virtual Machine ready to do some serious data science!

[image: Home_Icon] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Research Cyberinfrastructure associated with CyVerse

While CyVerse provides free and open resources for data storage and computing, you may find that your work is pushing the limits of what CyVerse offers in its core services.

By design, there are other national research organizations whom you should be aware of, and ready to interface with. CyVerse is a partner with numerous other organizations, and can be used as a nexus to send your data and algorithms to the largest public research computing centers in the world.

XSEDE

The eXtreme Science and Engineering Discovery Environment (XSEDE) [https://www.xsede.org/] is a single virtual system that scientists can use to interactively share computing resources, data and expertise. People around the world use these resources and services — things like supercomputers, collections of data and new tools.

Exercise

	Sign up for an XSEDE account via the User Portal [https://portal.xsede.org/]

	Determine whether you’re ready for a start up allocation on one of the XSEDE resource.

	Fill out an XSEDE startup allocation.

Jetstream

Jetstream is CyVerse Atmosphere deployed on XSEDE. Allocations can be requested using the XSEDE portal.

With Jetstream, you can launch larger VMs than on CyVerse (currently up to 44-cores) with an option for GPU computing in the near future.

Jetstream API Documentation [https://iujetstream.atlassian.net/wiki/spaces/JWT/overview]

TACC

CyVerse resources are mirrored between the University of Arizona and the Texas Advanced Computing Center(TACC) [https://www.tacc.utexas.edu/]. You can access TACC resources from CyVerse, or log directly into their infrastructure via XSEDE.

Open Science Grid

The OpenScienceGrid (OSG) [https://opensciencegrid.org/] is another CyVerse partner. You can use the OSG through our Discovery Environmetn to launch high throughput computing jobs.

CyVerse Powered By

CyVerse supports “Powered by [http://www.cyverse.org/powered-by-cyverse]” projects which utilize more of the available CyVerse cyberinfrastructure than are exposed through its public services.

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Other Cyberinfrastructure Projects

National Groups

The Cloud Native Computing Foundation [https://www.cncf.io/] is an open source software foundation dedicated to making cloud native computing universal and sustainable

The Open Science Framework [https://osf.io/] is a tool that promotes open, centralized workflows by enabling capture of different aspects and products of the research lifecycle, including developing a research idea, designing a study, storing and analyzing collected data, and writing and publishing reports or papers.

The National Data Service [http://www.nationaldataservice.org/projects/labs.html] is an emerging vision for how scientists and researchers across all disciplines can find, reuse, and publish data.

Galaxy Project [https://galaxyproject.org/] is an open, web-based platform for accessible, reproducible, and transparent computational biomedical research.

Science Gateways Community Institute [https://sciencegateways.org/] allow science & engineering communities to access shared data, software, computing services, instruments, educational materials, and other resources specific to their disciplines.

Domain Specific Cyberinfrastructures

HydroShare [https://www.hydroshare.org/]

OpenTopography [http://opentopo.sdsc.edu]

CyberGIS [http://cybergis.illinois.edu/]

Molecular Sciences Software Institute [https://molssi.org/]

Advanced Cyberinfrastructure Development (ACID) [http://acid.sdsc.edu./projects]

Funding Opportunities

National Science Foundation

Cyberinfrastructure for Sustained Scientific Innovation (CSSI) [https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=505505&org=SES&from_org=SES]

Cyberinfrastructure for Biological Research (CIBR) [https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=505538&org=SES&from_org=SES]

Harnessing the Data Revolution (HDR): Institutes for Data-Intensive Research in Science and Engineering - Ideas Labs (I-DIRSE-IL) [https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=505614&org=SES&from_org=SES]

National Institutes of Health

Office of Cyber Infrastructure and Computational Biology (OCICB) [https://www.niaid.nih.gov/about/cyber-infrastructure-computational-biology-contacts]

Bioinformatics [https://bioinformatics.niaid.nih.gov/applications]

Other US Federal

Department of Energy ARPA-E [https://arpa-e.energy.gov/]

Department of Agriculture FACT [https://nifa.usda.gov/program/fact]

NOAA [https://www.noaa.gov/research]

Foundations

Alfred P. Sloan [https://sloan.org/]

Bill & Melinda Gates [https://www.gatesfoundation.org/]

Belmont Forum [http://www.belmontforum.org/]

Big 3

Google [https://www.google.com/grants/]

Microsoft [https://www.microsoft.com/en-us/research/awards/]

Amazon [https://ara.amazon-ml.com/]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Introduction to containers

What is a container?

A container is a standard unit of software that packages up code and all its dependencies so the application runs quickly and reliably from one computing environment to another. A container image includes everything needed to run an application: code, runtime, system tools, system libraries and settings.

Why use containers?

	Flexible: Even the most complex applications can be containerized.

	Lightweight: Containers leverage and share the host kernel, making them much more efficient in terms of system resources than virtual machines.

	Portable: You can build locally, deploy to the cloud, and run anywhere.

	Loosely coupled: Containers are highly self sufficient and encapsulated, allowing you to replace or upgrade one without disrupting others.

	Scalable: You can increase and automatically distribute container replicas across a datacenter.

	Secure: Containers apply aggressive constraints and isolations to processes without any configuration required on the part of the user.

We can move and scale our containerized applications; containers effectively guarantee that those applications will run the same way anywhere, allowing us to quickly and easily take advantage of all these environments.

Working with containers

	Image: self-contained, read-only ‘snapshot’ of your applications and packages, with all their dependencies

	Container: A virtualization of an operating system run within an isolated user space. A running instance of an image.

[image: docker]

Docker

Docker is a platform to build, share, and run applications with containers. Docker Engine is available on a variety of Linux platforms , Mac and Windows through Docker Desktop.

Docker images are built from Dockerfiles. A Dockerfile is a text document that contains all the commands you would normally execute manually in order to build a Docker image. Docker can build images automatically by reading the instructions from a Dockerfile.

More information on building Docker images

Once you have a Docker image you can:

	run it as a container (anywhere)

	push it to a registry (make it available to others)

	link it to GitHub with automated builds

Other things to note about Docker:

	Docker always runs as root. This makes it unsuitable for use on large computing systems with many users such as HPC.

	Docker images and containers are stored in the Docker directory (where Docker is installed) so you won’t see them in a list of your files. There are special Docker commands you can use to list/remove them.

[image: singularity]

Singularity

Singularity was created to run complex applications on HPC clusters in a simple, portable, and reproducible way. You are the same user inside a container as outside, and cannot gain additional privilege on the host system by default.

Singularity images are built from definition files [https://sylabs.io/guides/3.5/user-guide/cli/singularity_build.html]. Like Dockerfiles, they provide a list of commands necessary to build the image. They also have a very specific format although it is a different format from Dockerfiles.

Fortunately, Singularity will automatically convert and run Docker images (so you may not need to learn how to build a Singularity image at all).

Once built, the Singularity image will be saved as a .sif file in your local working directory. You can easily see your image when you list your files but you may have images files saved to lots of different directories.

[image: kubernetes]

Kubernetes

Kubernetes automates the distribution and scheduling of application containers across a cluster in a more efficient way. This allows you to scale-up your analyses as necessary.

A Kubernetes cluster consists of two types of resources:

	master node: responsible for deciding what runs on all of the cluster’s nodes. This can include scheduling workloads, like containerized applications, and managing the workloads’ lifecycle, scaling, and upgrades. The master also manages network and storage resources for those workloads.

	worker node: A cluster typically has one or more nodes, which are the worker machines that run your containerized applications and other workloads. Each node is managed from the master, which receives updates on each node’s self-reported status.

[image: cluster]

More worker nodes = more compute power. This means you can easily scale your app to run much faster/with larger datasets.

Once the application instances are created, a Kubernetes Deployment Controller continuously monitors those instances. If the Node hosting an instance goes down or is deleted, the Deployment controller replaces the instance with an instance on another Node in the cluster. This provides a self-healing mechanism to address machine failure or maintenance.

Finding pre-built images

Image registry: a storage and content delivery system, such as that used by Docker

Warning

Only use images from trusted sources or images for which you can see the Dockerfile. An image from an untrusted source could contain something other than what it’s labeled (eg. malware). If you can see the Dockerfile you can see exactly what is in the image.

Docker Hub

Docker Hub is a service provided by Docker for finding and sharing container images with your team. It provides the following major features:

	Repositories: Push and pull container images.

	Teams & Organizations: Manage access to private repositories of container images.

	Official Images: Pull and use high-quality container images provided by Docker.

	Publisher Images: Pull and use high- quality container images provided by external vendors. Certified images also include support and guarantee compatibility with Docker Enterprise.

	Builds: Automatically build container images from GitHub and Bitbucket and push them to Docker Hub.

	Webhooks: Trigger actions after a successful push to a repository to integrate Docker Hub with other services.

Docker Hub is the most well-known and popular image registry for Docker containers.

[image: biocontainerlogo]

BioContainers Registry

BioContainers is a community-driven project that provides the infrastructure and basic guidelines to create, manage and distribute bioinformatics containers with special focus in proteomics, genomics, transcriptomics and metabolomics. BioContainers is based on the popular frameworks of Docker.

Although anyone can create a BioContainer, the majority of BioContainers are created by the Bioconda project. Every Bioconda package has a corresponding BioContainer available at Quay.io.

[image: biocondalogo]

	package manager: collection of software tools that automates the process of installing, upgrading, configuring, and removing computer programs for a computer’s operating system in a consistent manner

	Bioconda is a channel for the conda package manager specializing in bioinformatics software. It consists of:

	Over 800 contributors that add, modify, update and maintain the recipes

	A repository of > 7000 bioinformatics packages ready to use

	Each package added to Bioconda also has a corresponding Docker BioContainer automatically created and uploaded to Quay.io

	You can contribute [https://bioconda.github.io/contributing.html] to the Bioconda project by building your own packages. Each package will also be made available as a BioContainer at Quay

Note

The BioContainers registry search returns partial matches and matches to the tool description. So, if you want to find all the tools relevant to Nanopore analysis you can search for ‘nanopore’.

Note

You want the docker images, not the Conda packages. Conda packages are not containers.

Quay

Quay is another general image registry. It works the same way as Docker Hub. However, Quay is home to all BioContainers made by the Bioconda project. Now we will find a BioContainer image at Quay, pull that image and run it on cloud virtual machine.

Hands-on

To run your BioContainer you will need a computer with Docker installed.

Launch this Atmosphere instance: Ubuntu 18.04 GUI XFCE Base

How to install Docker

Installing Docker on your computer takes a little time but it is reasonably straight forward and it is a one-time setup. How to install Docker.

Docker installation is much easier on an Atmosphere instance with the ‘ezd’ command.

$ ezd

Get data to use with your container

Install iCommands

$ cd Desktop
$ iget /iplant/home/shared/iplantcollaborative/example_data/porechop/SRR6059710.fastq

Use ‘docker pull’ to get the image

Go to Quay and search for ‘porechop’ in the search bar at the top of the page.

Click on the ‘tag’ icon on the left side of the screen to show all the available ‘porechop’ images.

[image: biocontainers3]

Click the ‘fetch tag’ icon at the right and choose ‘Docker pull (by tag)’ from the dropdown. This will copy the docker pull command that we will need on the command line.

[image: biocontainers8]

Now you will need to pull the image from the registry onto your computer. Use the ‘docker pull’ command you copied from the registry above.

Note

If you are working on a system for which you don’t have root permissions you will need to use ‘sudo’ and provide your password. Like this:

$ sudo docker pull quay.io/biocontainers/porechop:0.2.3_seqan2.1.1--py36h2d50403_3

[image: pullquayio]

Use the ‘docker run’ command to run the container

The easiest way to test the container to run the help command for the tool. In this case ‘-h’ is the help command.

$ sudo docker run --rm -v $(pwd):/working-dir -w /working-dir --entrypoint="porechop" quay.io/biocontainers/porechop:0.2.3_seqan2.1.1--py36h2d50403_3 -h

From the result we are able to see the only required option is ‘-i INPUT’. Options in [square brackets] are not required.

Now we can run the container with our data file to see the output.

$ sudo docker run --rm -v $(pwd):/working-dir -w /working-dir --entrypoint="porechop" quay.io/biocontainers/porechop:0.2.3_seqan2.1.1--py36h2d50403_3 -i SRR6059710.fastq -o porechop_output.fastq

We can break the command down into pieces so it is easier to read (the backslash represents where we have broken the line).

sudo \
docker run \
--rm \
-v $(pwd):/working-dir \
-w /working-dir \
--entrypoint="porechop" \
quay.io/biocontainers/porechop:0.2.3_seqan2.1.1--py36h2d50403_3 \
-i SRR6059710.fastq \
-o porechop_out.fastq

What it All Means

	‘sudo’ allows you to run the container with ‘root’ permissions–only required if you don’t have root permissions on your machine

	‘docker run’ tells docker to run the container

	‘–rm’ removes the container (not the image) from your system when the analysis is complete

	‘-v’ mounts a local directory into a directory within the container

	‘-w’ specifies the working directory within the container

	‘–entrypoint’ tells the container what to do (usually the name of the tool; the command you would use to run the tool on the command line)

	‘quay.io/biocontainers/porechop:0.2.3_seqan2.1.1–py36h2d50403_3’ is the name of the image we pulled from Quay.io

	‘-i’ is the argument for the input file (FASTQ) for Porechop

	‘-o’ is the arguemnt for the output file (trimmed FASTQ) for Porechop

Important

You must supply an entrypoint on the command line when you run a BioContainer. It is possible to build entrypoints into a container but that is not he case with BioContainers.

[image: porechoprun]
[image: porechoptrim]
[image: porechopdone]

The output from Porechop is saved into the working directory within the container. We ran the container we mounted our current local working directory into the working directory within the container. The analysis has finished, the container has been removed (remember –rm) and now we should find our outputs in our local current working directory.

List the files:

$ ls -l

[image: porechopout]

You can see the ‘porechop_out.fastq’ file is in our current working directory. Notice that the this file is owned by ‘root’. This is because Docker containers always run as ‘root’.

At this point you can run your container on any system with Docker installed. To use this container on an HPC system you will need to use Singularity (rather than Docker) to run your container. For more information about running Docker containers with Singularity see the Singularity documentation [https://singularity.lbl.gov/quickstart]

Useful Links

	BioContainers [https://biocontainers.pro/#/]

	Bioconda [https://bioconda.github.io/]

	Request a BioContainer [http://github.com/BioContainers/containers/issues]

	Singularity documentation [https://singularity.lbl.gov/quickstart]

	BioContainers contribution guidelines [https://github.com/BioContainers/specs#33-how-to-create-a-docker-based-biocontainer]

	Report BioContainers problems [http://github.com/BioContainers/containers/issues]

Some examples of public/private registries to consider for your research needs:

	Docker Cloud [https://cloud.docker.com/]

	Docker Hub [https://hub.docker.com/]

	Docker Trusted Registry [https://docs.docker.com/ee/dtr/]

	Amazon Elastic Container Registry [https://aws.amazon.com/ecr/]

	Google Container Registry [https://aws.amazon.com/ecr/]

	Azure Container Registry [https://azure.microsoft.com/en-us/services/container-registry/]

	NVIDIA GPU Cloud [https://ngc.nvidia.com/catalog/containers]

	Private Docker Registry [https://private-docker-registry.com/] - not official Docker

	Gitlab Container Registry [https://docs.gitlab.com/ce/administration/container_registry.html]

	Quay [https://quay.io/]

	TreeScale [https://treescale.com/]

	Canister [https://www.canister.io/]

	BioContainers Registry [https://biocontainers.pro/#/registry]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Launching a Docker app on Atmosphere

You don’t need to do the first 5 steps if you are running the ‘DataCarpentry Genomics May2019’ image.

	Use web shell to run a basic Atmosphere instance*

	Type ezd

	Wait for Docker to install

	Close or Refresh the Web Shell browser tab.

	type docker run hello-world

	type docker run godlovedc/lolcow

Note

You may receive an error if Docker did not add your username to the docker group, you’ll need to use the sudo invocation, e.g. sudo docker run hello-world

To add yourself to the docker group type sudo usermod -aG docker $USER and refresh your terminal window.

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

Introduction to Docker

[image: docker]

1. Prerequisites

There are no specific skills needed for this tutorial beyond a basic comfort with the command line and using a text editor. Prior experience in developing web applications will be helpful but is not required.

2. Docker Installation

Getting all the tooling setup on your computer can be a daunting task, but not with Docker. Getting Docker up and running on your favorite OS (Mac/Windows/Linux) is very easy.

The getting started guide on Docker has detailed instructions for setting up Docker on Mac [https://docs.docker.com/docker-for-mac/install/]/Windows [https://docs.docker.com/docker-for-windows/install/]/Linux [https://docs.docker.com/install/linux/docker-ce/ubuntu/].

Note

If you’re using Docker for Windows make sure you have shared your drive [https://docs.docker.com/docker-for-windows/#shared-drives].

If you’re using an older version of Windows or MacOS you may need to use Docker Machine [https://docs.docker.com/machine/overview/] instead.

All commands work in either Bash or Powershell on Windows.

Note

Depending on how you’ve installed Docker on your system, you might see a permission denied error after running the above command. If you’re on Linux, you may need to prefix your Docker commands with sudo. Alternatively to run docker command without sudo, you need to add your user (who has root privileges) to docker group.
For this run:

Create the docker group:

$ sudo groupadd docker

Add your user to the docker group:

$ sudo usermod -aG docker $USER

Log out and log back in so that your group membership is re-evaluated

2.1 Testing Docker installation

Once you are done installing Docker, test your Docker installation by running the following command to make sure you are using version 1.13 or higher:

$ docker --version
Docker version 18.09.3, build 774a1f4

When run without --version you should see a whole bunch of lines showing the different options available with docker. Alternatively you can test your installation by running the following:

$ docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
03f4658f8b78: Pull complete
a3ed95caeb02: Pull complete
Digest: sha256:8be990ef2aeb16dbcb9271ddfe2610fa6658d13f6dfb8bc72074cc1ca36966a7
Status: Downloaded newer image for hello-world:latest

Hello from Docker.
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
 1. The Docker client contacted the Docker daemon.
 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
 3. The Docker daemon created a new container from that image which runs the
 executable that produces the output you are currently reading.
 4. The Docker daemon streamed that output to the Docker client, which sent it
 to your terminal.
.......

3. Running Docker containers from prebuilt images

Now that you have everything setup, it’s time to get our hands dirty. In this section, you are going to run a container from Alpine Linux [https://www.alpinelinux.org/] (a lightweight linux distribution) image on your system and get a taste of the docker run command.

But wait, what exactly is a container and image?

Containers - Running instances of Docker images — containers run the actual applications. A container includes an application and all of its dependencies. It shares the kernel with other containers, and runs as an isolated process in user space on the host OS.

Images - The file system and configuration of our application which are used to create containers. To find out more about a Docker image, run docker inspect hello-world. In the demo above, you could have used the docker pull command to download the hello-world image. However when you executed the command docker run hello-world, it also did a docker pull behind the scenes to download the hello-world image with latest tag (we will learn more about tags little later).

Now that we know what a container and image is, let’s run the following command in our terminal:

$ docker run alpine ls -l
total 52
drwxr-xr-x 2 root root 4096 Dec 26 2016 bin
drwxr-xr-x 5 root root 340 Jan 28 09:52 dev
drwxr-xr-x 14 root root 4096 Jan 28 09:52 etc
drwxr-xr-x 2 root root 4096 Dec 26 2016 home
drwxr-xr-x 5 root root 4096 Dec 26 2016 lib
drwxr-xr-x 5 root root 4096 Dec 26 2016 media
........

Similar to docker run hello-world command in the demo above, docker run alpine ls -l command fetches the alpine:latest image from the Docker registry first, saves it in our system and then runs a container from that saved image.

When you run docker run alpine, you provided a command ls -l, so Docker started the command specified and you saw the listing

You can use the docker images command to see a list of all images on your system

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
alpine latest c51f86c28340 4 weeks ago 1.109 MB
hello-world latest 690ed74de00f 5 months ago 960 B

Let’s try something more exciting.

$ docker run alpine echo "Hello world"
Hello world

OK, that’s some actual output. In this case, the Docker client dutifully ran the echo command in our alpine container and then exited it. If you’ve noticed, all of that happened pretty quickly. Imagine booting up a virtual machine, running a command and then killing it. Now you know why they say containers are fast!

Try another command.

$ docker run alpine sh

Wait, nothing happened! Is that a bug? Well, no. These interactive shells will exit after running any scripted commands such as sh, unless they are run in an interactive terminal - so for this example to not exit, you need to docker run -it alpine sh. You are now inside the container shell and you can try out a few commands like ls -l, uname -a and others.

Before doing that, now it’s time to see the docker ps command which shows you all containers that are currently running.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Since no containers are running, you see a blank line. Let’s try a more useful variant: docker ps -a

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
36171a5da744 alpine "/bin/sh" 5 minutes ago Exited (0) 2 minutes ago fervent_newton
a6a9d46d0b2f alpine "echo 'hello from alp" 6 minutes ago Exited (0) 6 minutes ago lonely_kilby
ff0a5c3750b9 alpine "ls -l" 8 minutes ago Exited (0) 8 minutes ago elated_ramanujan
c317d0a9e3d2 hello-world "/hello" 34 seconds ago Exited (0) 12 minutes ago stupefied_mcclintock

What you see above is a list of all containers that you ran. Notice that the STATUS column shows that these containers exited a few minutes ago.

If you want to run scripted commands such as sh, they should be run in an interactive terminal. In addition, interactive terminal allows you to run more than one command in a container. Let’s try that now:

$ docker run -it alpine sh
/ # ls
bin dev etc home lib media mnt proc root run sbin srv sys tmp usr var
/ # uname -a
Linux de4bbc3eeaec 4.9.49-moby #1 SMP Wed Sep 27 23:17:17 UTC 2017 x86_64 Linux

Running the run command with the -it flags attaches us to an interactive tty in the container. Now you can run as many commands in the container as you want. Take some time to run your favorite commands.

Exit out of the container by giving the exit command.

/ # exit

Note

If you type exit your container will exit and is no longer active. To check that, try the following:

$ docker ps -l
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
de4bbc3eeaec alpine "/bin/sh" 3 minutes ago Exited (0) About a minute ago pensive_leavitt

If you want to keep the container active, then you can use keys ctrl +p, ctrl +q. To make sure that it is not exited run the same docker ps -a command again:

$ docker ps -l
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
0db38ea51a48 alpine "sh" 3 minutes ago Up 3 minutes elastic_lewin

Now if you want to get back into that container, then you can type docker attach <container id>. This way you can save your container:

$ docker attach 0db38ea51a48

4. Build Docker images which contain your own code

Great! so you have now looked at docker run, played with a Docker containers and also got the hang of some terminology. Armed with all this knowledge, you are now ready to get to the real stuff — deploying your own applications with Docker.

4.1 Deploying a command-line app

Note

Code for this section is in this repo in the examples/ [https://github.com/CyVerse-learning-materials/container_camp_workshop_2019/tree/master/examples] directory

In this section, let’s dive deeper into what Docker images are. Later on we will build our own image and use that image to run an application locally.

4.1.1 Docker images

Docker images are the basis of containers. In the previous example, you pulled the alpine image from the registry and asked the Docker client to run a container based on that image. To see the list of images that are available locally on your system, run the docker images command.

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu bionic 47b19964fb50 4 weeks ago 88.1MB
alpine latest caf27325b298 4 weeks ago 5.53MB
hello-world latest fce289e99eb9 2 months ago 1.84kB
.........

Above is a list of images that I’ve pulled from the registry and those I’ve created myself (we’ll shortly see how). You will have a different list of images on your machine. The TAG refers to a particular snapshot of the image and the ID is the corresponding unique identifier for that image.

For simplicity, you can think of an image akin to a git repository - images can be committed with changes and have multiple versions. When you do not provide a specific version number, the client defaults to latest.

For example you could pull a specific version of ubuntu image as follows:

$ docker pull ubuntu:16.04

If you do not specify the version number of the image, as mentioned, the Docker client will default to a version named latest.

So for example, the docker pull command given below will pull an image named ubuntu:latest

$ docker pull ubuntu

To get a new Docker image you can either get it from a registry (such as the Docker hub) or create your own. There are hundreds of thousands of images available on Docker hub. You can also search for images directly from the command line using docker search.

$ docker search ubuntu
 NAME DESCRIPTION STARS OFFICIAL AUTOMATED
 ubuntu Ubuntu is a Debian-based Linux operating sys… 7310 [OK]
 dorowu/ubuntu-desktop-lxde-vnc Ubuntu with openssh-server and NoVNC 163 [OK]
 rastasheep/ubuntu-sshd Dockerized SSH service, built on top of offi… 131 [OK]
 ansible/ubuntu14.04-ansible Ubuntu 14.04 LTS with ansible 90 [OK]
 ubuntu-upstart Upstart is an event-based replacement for th… 81 [OK]
 neurodebian NeuroDebian provides neuroscience research s… 43 [OK]
 ubuntu-debootstrap debootstrap --variant=minbase --components=m… 35 [OK]
 1and1internet/ubuntu-16-nginx-php-phpmyadmin-mysql-5 ubuntu-16-nginx-php-phpmyadmin-mysql-5 26 [OK]
 nuagebec/ubuntu Simple always updated Ubuntu docker images w… 22 [OK]
 tutum/ubuntu Simple Ubuntu docker images with SSH access 18
 ppc64le/ubuntu Ubuntu is a Debian-based Linux operating sys… 11
 i386/ubuntu Ubuntu is a Debian-based Linux operating sys… 9
 1and1internet/ubuntu-16-apache-php-7.0 ubuntu-16-apache-php-7.0 7 [OK]
 eclipse/ubuntu_jdk8 Ubuntu, JDK8, Maven 3, git, curl, nmap, mc, … 5 [OK]
 darksheer/ubuntu Base Ubuntu Image -- Updated hourly 3 [OK]
 codenvy/ubuntu_jdk8 Ubuntu, JDK8, Maven 3, git, curl, nmap, mc, … 3 [OK]
 1and1internet/ubuntu-16-nginx-php-5.6-wordpress-4 ubuntu-16-nginx-php-5.6-wordpress-4 2 [OK]
 1and1internet/ubuntu-16-nginx ubuntu-16-nginx 2 [OK]
 pivotaldata/ubuntu A quick freshening-up of the base Ubuntu doc… 1
 smartentry/ubuntu ubuntu with smartentry 0 [OK]
 pivotaldata/ubuntu-gpdb-dev Ubuntu images for GPDB development 0
 1and1internet/ubuntu-16-healthcheck ubuntu-16-healthcheck 0 [OK]
 thatsamguy/ubuntu-build-image Docker webapp build images based on Ubuntu 0
 ossobv/ubuntu Custom ubuntu image from scratch (based on o… 0
 1and1internet/ubuntu-16-sshd ubuntu-16-sshd 0 [OK]

An important distinction with regard to images is between base images and child images and official images and user images (Both of which can be base images or child images.).

Important

Base images are images that have no parent images, usually images with an OS like ubuntu, alpine or debian.

Child images are images that build on base images and add additional functionality.

Official images are Docker sanctioned images. Docker, Inc. sponsors a dedicated team that is responsible for reviewing and publishing all Official Repositories content. This team works in collaboration with upstream software maintainers, security experts, and the broader Docker community. These are not prefixed by an organization or user name. In the list of images above, the python, node, alpine and nginx images are official (base) images. To find out more about them, check out the Official Images Documentation.

User images are images created and shared by users like you. They build on base images and add additional functionality. Typically these are formatted as user/image-name. The user value in the image name is your Dockerhub user or organization name.

4.1.2 Meet our Python app

Now that you have a better understanding of images, it’s time to create an image that sandboxes a small Python application. We’ll do this by creating a small Python script which prints a welcome message, then dockerizing it by writing a Dockerfile, and finally we’ll build the image and run it.

	Create a Python script

	Build the image

	Run your image

	Create a Python script which prints a welcome message

Start by creating a directory called simple-script where we’ll create the following files:

	app.py

	Dockerfile

$ mkdir simple-script && cd simple-script

1.1 app.py

Create the app.py file with the following content. You can use any of favorite text editor to create this file.

print('hello world!')
print('this is my first attempt')

Note

If you want, you can run this app through your laptop’s native Python installation first just to see what it looks like. Run python app.py.

You should see the message:

hello world!
this is my first attempt

This is totally optional - but some people like to see what the app’s supposed to do before they try to Dockerize it.

1.2. Dockerfile

A Dockerfile is a text file that contains a list of commands that the Docker daemon calls while creating an image. The Dockerfile contains all the information that Docker needs to know to run the app — a base Docker image to run from, location of your project code, any dependencies it has, and what commands to run at start-up. It is a simple way to automate the image creation process. The best part is that the commands you write in a Dockerfile are almost identical to their equivalent Linux commands. This means you don’t really have to learn new syntax to create your own Dockerfiles.

We want to create a Docker image with this app. As mentioned above, all user images are based on a base image. Since our application is written in Python, we will build our own Python image based on Alpine. We’ll do that using a Dockerfile.

Create a file called Dockerfile in the simple-script directory, and add content to it as described below.

our base image# our base image
FROM alpine:3.9

install python and pip
RUN apk add --update py3-pip

copy files required for the app to run
COPY app.py /usr/src/app/

run the application
CMD python3 /usr/src/app/app.py

Now let’s see what each of those lines mean..

1.2.1 We’ll start by specifying our base image, using the FROM keyword:

FROM alpine:3.9

1.2.2. The next step usually is to write the commands of copying the files and installing the dependencies. But first we will install the Python pip package to the alpine linux distribution. This will not just install the pip package but any other dependencies too, which includes the python interpreter. Add the following RUN command next:

RUN apk add --update py3-pip

1.2.3. Copy the file you have created earlier into our image by using COPY command.

COPY app.py /usr/src/app/

1.2.4. The last step is the command for running the application. Use the CMD command to do that:

CMD python3 /usr/src/app/app.py

The primary purpose of CMD is to tell the container which command it should run by default when it is started.

	Build the image

Now that you have your Dockerfile, you can build your image. The docker build command does the heavy-lifting of creating a docker image from a Dockerfile.

The docker build command is quite simple - it takes an optional tag name with the -t flag, and the location of the directory containing the Dockerfile - the . indicates the current directory:

Note

When you run the docker build command given below, make sure to replace <YOUR_DOCKERHUB_USERNAME> with your username. This username should be the same one you created when registering on Docker hub. If you haven’t done that yet, please go ahead and create an account in Dockerhub [https://hub.docker.com].

YOUR_DOCKERHUB_USERNAME=<YOUR_DOCKERHUB_USERNAME>

For example this is how I assign my dockerhub username

YOUR_DOCKERHUB_USERNAME=jpistorius

Now build the image using the following command:

$ docker build -t $YOUR_DOCKERHUB_USERNAME/simple-script .
Sending build context to Docker daemon 10.24kB
Step 1/4 : FROM alpine:3.9
 ---> caf27325b298
Step 2/4 : RUN apk add --update py3-pip
 ---> Using cache
 ---> dad2a197fcad
Step 3/4 : COPY app.py /usr/src/app/
 ---> Using cache
 ---> a8ebf6cd2735
Step 4/4 : CMD python3 /usr/src/app/app.py
 ---> Using cache
 ---> a1fb2906a937
Successfully built a1fb2906a937
Successfully tagged jpistorius/simple-script:latest

If you don’t have the alpine:3.9 image, the client will first pull the image and then create your image. Therefore, your output on running the command will look different from mine. If everything went well, your image should be ready! Run docker images and see if your image $YOUR_DOCKERHUB_USERNAME/simple-script shows.

	Run your image

When Docker can successfully build your Dockerfile, test it by starting a new container from your new image using the docker run command.

$ docker run $YOUR_DOCKERHUB_USERNAME/simple-script

You should see something like this:

hello world!
this is my first attempt

4.2 Deploying a Jupyter Notebook

In this section, let’s build a Docker image which can run a Jupyter Notebook

4.2.1 Suitable Docker images for a base

Search for images on Docker Hub which contain the string ‘jupyter’

$ docker search jupyter
NAME DESCRIPTION STARS OFFICIAL AUTOMATED
jupyter/datascience-notebook Jupyter Notebook Data Science Stack from htt… 446
jupyter/all-spark-notebook Jupyter Notebook Python, Scala, R, Spark, Me… 223
jupyterhub/jupyterhub JupyterHub: multi-user Jupyter notebook serv… 195 [OK]
jupyter/scipy-notebook Jupyter Notebook Scientific Python Stack fro… 155
jupyter/tensorflow-notebook Jupyter Notebook Scientific Python Stack w/ … 116
jupyter/pyspark-notebook Jupyter Notebook Python, Spark, Mesos Stack … 95
jupyter/minimal-notebook Minimal Jupyter Notebook Stack from https://… 73
ermaker/keras-jupyter Jupyter with Keras (with Theano backend and … 66 [OK]
jupyter/base-notebook Small base image for Jupyter Notebook stacks… 60
xblaster/tensorflow-jupyter Dockerized Jupyter with tensorflow 52 [OK]
jupyter/r-notebook Jupyter Notebook R Stack from https://github… 22
jupyterhub/singleuser single-user docker images for use with Jupyt… 21 [OK]
...

4.2.2 Meet our model

Let’s deploy a Python function inside a Docker image along with Jupyter.

	Create a Python file containing a function

	`Build the image`_

	`Run your image`_

	Create a Python file containing a function

Start by creating a directory called myfirstapp where we’ll create the following files:

	model.py

	Dockerfile

$ mkdir myfirstapp && cd myfirstapp

1.1 model.py

Create the model.py file with the following content. You can use any of favorite text editor to create this file.

def introduce(name):
 return 'Hello ' + name

1.2. Dockerfile

Since we want to use a Jupyter notebook to call our function, we will build an image based on jupyter/minimal-notebook.

Note

This is one of the official Docker images provided by the Jupyter project for you to build your own data science notebooks on:

https://jupyter-docker-stacks.readthedocs.io/en/latest/

Create a file called Dockerfile in the myfirstapp directory, and add content to it as described below.

our base image
FROM jupyter/minimal-notebook

copy files required for the model to work
COPY model.py /home/jovyan/work/

tell the port number the container should expose
EXPOSE 8888

Now let’s see what each of those lines mean..

1.2.1 We’ll start by specifying our base image, using the FROM keyword:

FROM jupyter/minimal-notebook

1.2.2. Copy the file you have created earlier into our image by using COPY command.

COPY model.py /home/jovyan/work/

1.2.3. Specify the port number which needs to be exposed. Since Jupyter runs on 8888 that’s what we’ll expose.

EXPOSE 8888

1.2.4. What about CMD?

Notice that unlike our previous Dockerfile this one does not end with a CMD command. This is on purpose.

Remember: The primary purpose of CMD is to tell the container which command it should run by default when it is started.

Can you guess what will happen if we don’t specify our own ‘entrypoint’ using CMD?

	Build the image

Note

Remember to replace <YOUR_DOCKERHUB_USERNAME> with your username. This username should be the same one you created when registering on Docker hub.

YOUR_DOCKERHUB_USERNAME=<YOUR_DOCKERHUB_USERNAME>

For example this is how I assign my dockerhub username

YOUR_DOCKERHUB_USERNAME=jpistorius

Now build the image using the following command:

$ docker build -t $YOUR_DOCKERHUB_USERNAME/myfirstapp .
Sending build context to Docker daemon 3.072kB
Step 1/3 : FROM jupyter/minimal-notebook
 ---> 36c8dd0e1d8f
Step 2/3 : COPY model.py /home/jovyan/work/
 ---> b61aefd7a735
Step 3/3 : EXPOSE 8888
 ---> Running in 519dcabe4eb3
Removing intermediate container 519dcabe4eb3
 ---> 7983fe164dc6
Successfully built 7983fe164dc6
Successfully tagged jpistorius/myfirstapp:latest

If everything went well, your image should be ready! Run docker images and see if your image $YOUR_DOCKERHUB_USERNAME/myfirstapp shows.

	Run your image

When Docker can successfully build your Dockerfile, test it by starting a new container from your new image using the docker run command. Don’t forget to include the port forwarding options you learned about before.

$ docker run -p 8888:8888 $YOUR_DOCKERHUB_USERNAME/myfirstapp

You should see something like this:

Executing the command: jupyter notebook
[I 07:21:25.396 NotebookApp] Writing notebook server cookie secret to /home/jovyan/.local/share/jupyter/runtime/notebook_cookie_secret
[I 07:21:25.609 NotebookApp] JupyterLab extension loaded from /opt/conda/lib/python3.7/site-packages/jupyterlab
[I 07:21:25.609 NotebookApp] JupyterLab application directory is /opt/conda/share/jupyter/lab
[I 07:21:25.611 NotebookApp] Serving notebooks from local directory: /home/jovyan
[I 07:21:25.611 NotebookApp] The Jupyter Notebook is running at:
[I 07:21:25.611 NotebookApp] http://(29a022bb5807 or 127.0.0.1):8888/?token=copy-your-own-token-not-this-one
[I 07:21:25.611 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 07:21:25.612 NotebookApp]

 Copy/paste this URL into your browser when you connect for the first time,
 to login with a token:
 http://(29a022bb5807 or 127.0.0.1):8888/?token=copy-your-own-token-not-this-one

Head over to http://localhost:8888 and your Jupyter notebook server should be running.

Note: Copy the token from your own docker run output and paste it into the ‘Password or token’ input box.

5. Dockerfile commands summary

Here’s a quick summary of the few basic commands we used in our Dockerfiles.

	FROM starts the Dockerfile. It is a requirement that the Dockerfile must start with the FROM command. Images are created in layers, which means you can use another image as the base image for your own. The FROM command defines your base layer. As arguments, it takes the name of the image. Optionally, you can add the Dockerhub username of the maintainer and image version, in the format username/imagename:version.

	RUN is used to build up the Image you’re creating. For each RUN command, Docker will run the command then create a new layer of the image. This way you can roll back your image to previous states easily. The syntax for a RUN instruction is to place the full text of the shell command after the RUN (e.g., RUN mkdir /user/local/foo). This will automatically run in a /bin/sh shell. You can define a different shell like this: RUN /bin/bash -c ‘mkdir /user/local/foo’

	COPY copies local files into the container.

	CMD defines the commands that will run on the Image at start-up. Unlike a RUN, this does not create a new layer for the Image, but simply runs the command. There can only be one CMD per a Dockerfile/Image. If you need to run multiple commands, the best way to do that is to have the CMD run a script. CMD requires that you tell it where to run the command, unlike RUN. So example CMD commands would be:

CMD ["python", "./app.py"]

CMD ["/bin/bash", "echo", "Hello World"]

	EXPOSE creates a hint for users of an image which ports provide services. It is included in the information which can be retrieved via $ docker inspect <container-id>.

Note

The EXPOSE command does not actually make any ports accessible to the host! Instead, this requires publishing ports by means of the -p flag when using docker run.

	PUSH pushes your image to Docker Cloud, or alternately to a private registry

Note

If you want to learn more about Dockerfiles, check out Best practices for writing Dockerfiles [https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/].

6. Demos

6.1 Portainer

Portainer [https://portainer.io/] is an open-source lightweight managment UI which allows you to easily manage your Docker hosts or Swarm cluster.

	Simple to use: It has never been so easy to manage Docker. Portainer provides a detailed overview of Docker and allows you to manage containers, images, networks and volumes. It is also really easy to deploy, you are just one Docker command away from running Portainer anywhere.

	Made for Docker: Portainer is meant to be plugged on top of the Docker API. It has support for the latest versions of Docker, Docker Swarm and Swarm mode.

6.1.1 Installation

Use the following Docker commands to deploy Portainer. Now the second line of command should be familiar to you by now. We will talk about first line of command in the Advanced Docker session.

$ docker volume create portainer_data

$ docker run -d -p 9000:9000 -v /var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data portainer/portainer

	If you are on mac, you’ll just need to access the port 9000 (http://localhost:9000) of the Docker engine where portainer is running using username admin and password tryportainer

	If you are running Docker on Atmosphere/Jetstream or on any other cloud, you can open ipaddress:9000. For my case this is http://128.196.142.26:9000

Note

The -v /var/run/docker.sock:/var/run/docker.sock option can be used in mac/linux environments only.

[image: portainer_demo]

6.2 Play-with-docker (PWD)

PWD [https://labs.play-with-docker.com/] is a Docker playground which allows users to run Docker commands in a matter of seconds. It gives the experience of having a free Alpine Linux Virtual Machine in browser, where you can build and run Docker containers and even create clusters in Docker Swarm Mode [https://docs.docker.com/engine/swarm/]. Under the hood, Docker-in-Docker (DinD) is used to give the effect of multiple VMs/PCs. In addition to the playground, PWD also includes a training site composed of a large set of Docker labs and quizzes from beginner to advanced level available at training.play-with-docker.com [https://training.play-with-docker.com/].

6.2.1 Installation

You don’t have to install anything to use PWD. Just open https://labs.play-with-docker.com/ <https://labs.play-with-docker.com/>`_ and start using PWD

Note

You can use your Dockerhub credentials to log-in to PWD

[image: pwd]

Advanced Docker

Now that we are relatively comfortable with Docker, lets look at some advanced Docker topics, such as:

	Registry

	Porting a Docker image to a Registry & Repository (public and private)

	Managing data within containers

	Deploying containers on cloud services

1. Docker Registries

To demonstrate the portability of what we just created, let’s upload our built Docker image to a Docker Registry and then run it somewhere else (i.e. CyVerse Atmosphere [https://atmo.cyverse.org]).

In this exercise, you’ll learn how to push built containers to registries, pull those containers from registries, and run those containers on remote hosts (virtual machines).

This will benefit you when you want to deploy new containers to production environments where testing is not possible.

Important

So what EXACTLY is a Registry?

A registry is a collection of Repositories, and a Repository is a collection of Images. A Docker Registry is sort of like a GitHub Repository, except the code is already compiled, in this case, into a container. You must have an account on a registry. You can create many repositories. The Docker CLI uses Docker’s public registry by default. You can even set up your own private registry using Docker Trusted Registry

There are several things you can do with Docker registries:

	Push images

	Find images

	Pull images

	Share images

1.1 Popular Registries

Some examples of public/private registries to consider for your research needs:

	Docker Cloud [https://cloud.docker.com/]

	Docker Hub [https://hub.docker.com/]

	Docker Trusted Registry [https://docs.docker.com/ee/dtr/]

	Amazon Elastic Container Registry [https://aws.amazon.com/ecr/]

	Google Container Registry [https://aws.amazon.com/ecr/]

	Azure Container Registry [https://azure.microsoft.com/en-us/services/container-registry/]

	NVIDIA GPU Cloud [https://ngc.nvidia.com/catalog/containers]

	Private Docker Registry [https://private-docker-registry.com/] - not official Docker

	Gitlab Container Registry [https://docs.gitlab.com/ce/administration/container_registry.html]

	CoreOS Quay [https://quay.io/]

	TreeScale [https://treescale.com/]

	Canister [https://www.canister.io/]

1.1.1 Log into a Registry with your Docker ID

Now that you’ve created and tested your image, you can push it to Docker cloud or Docker hub.

Note

If you don’t have an account, sign up for one at Docker Cloud [https://cloud.docker.com/] or Docker Hub [https://hub.docker.com/]. Make note of your username. There are several advantages of registering to DockerHub which we will see later on in the session

First, you have to login to your Docker Hub account.

If you want to authenticate to a different Registry, type the name of the registry after login:

$ docker login <registry-name>
Authenticating with existing credentials...
WARNING! Your password will be stored unencrypted in /home/tswetnam/.docker/config.json.
Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#credentials-store

Login Succeeded

If it is your first time logging in you will be queried for your username and password.

Login with your Docker ID to push and pull images from Docker Hub or private registry.

If you don’t have a Docker ID, head over to https://hub.docker.com to create one.

1.1.2 Tagging images

The notation for associating a local image with a repository on a registry is username/repository:tag. The tag is optional, but recommended, since it is the mechanism that registries use to give Docker images a version. Give the repository and tag meaningful names for the context, such as get-started:part2. This will put the image in the get-started repository and tag it as part2.

Note

By default the docker image gets a latest tag if you don’t provide one. Thought convenient, it is not recommended for reproducibility purposes.

Now, put it all together to tag the image. Run docker tag image with your username, repository, and tag names so that the image will upload to your desired destination. For our docker image since we already have our Dockerhub username we will just add tag which in this case is 1.0

$ docker tag username/appname:latest username/appname:1.0

1.1.3 Publish the image

Upload your tagged image to the Dockerhub repository

$ docker push username/appname:1.0

Once complete, the results of this upload are publicly available. If you log in to Docker Hub, you will see the new image there, with its pull command.

[image: docker_image]

Congrats! You just made your first Docker image and shared it with the world!

1.1.4 Pull and run the image from the remote repository

Let’s try to run the image from the remote repository on Cloud server by logging into CyVerse Atmosphere, launching an instance

First install Docker on Atmosphere using from here https://docs.docker.com/install/linux/docker-ce/ubuntu or alternatively you can use ezd command which is a short-cut command for installing Docker on Atmosphere

$ ezd

Now run the following command to run the docker image from Dockerhub

$ sudo docker run -d -p 8888:8888 --name jupyter username/jupyter:1.0

Note

You don’t have to run docker pull since if the image isn’t available locally on the machine, Docker will pull it from the repository.

Head over to http://<vm-address>:8888 and your app should be live.

1.2 Private repositories

In an earlier part, we had looked at the Docker Hub, which is a public registry that is hosted by Docker. While the Dockerhub plays an important role in giving public visibility to your Docker images and for you to utilize quality Docker images put up by others, there is a clear need to setup your own private registry too for your team/organization. For example, CyVerse has it own private registry which will be used to push the Docker images.

1.2.1 Pull down the Registry Image

You might have guessed by now that the registry must be available as a Docker image from the Docker Hub and it should be as simple as pulling the image down and running that. You are correct!

A Dockerhub search on the keyword registry brings up the following image as the top result:

[image: private_registry]

Run a container from registry Dockerhub image

$ docker run -d -p 5000:5000 --name registry registry:2

Run docker ps -l to check the recent container from this Docker image

$ docker ps -l
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
6e44a0459373 registry:2 "/entrypoint.sh /e..." 11 seconds ago Up 10 seconds 0.0.0.0:5000->5000/tcp registry

1.2.2 Tag the image that you want to push

Next step is to tag your image under the registry namespace and push it there

$ REGISTRY=localhost:5000

$ docker tag $YOUR_DOCKERHUB_USERNAME/myfirstapp:1.0 $REGISTRY/$(whoami)/myfirstapp:1.0

1.2.2 Publish the image into the local registry

Finally push the image to the local registry

$ docker push $REGISTRY/$(whoami)/myfirstapp:1.0
The push refers to a repository [localhost:5000/upendra_35/myfirstapp]
64436820c85c: Pushed
831cff83ec9e: Pushed
c3497b2669a8: Pushed
1c5b16094682: Pushed
c52044a91867: Pushed
60ab55d3379d: Pushed
1.0: digest: sha256:5095dea8b2cf308c5866ef646a0e84d494a00ff0e9b2c8e8313a176424a230ce size: 1572

1.2.3 Pull and run the image from the local repository

You can also pull the image from the local repository similar to how you pull it from Dockerhub and run a container from it

$ docker run -d -P --name=myfirstapplocal $REGISTRY/$(whoami)/myfirstapp:1.0

2. Automated Docker image building from GitHub

An automated build is a Docker image build that is triggered by a code change in a GitHub or Bitbucket repository. By linking a remote code repository to a Dockerhub automated build repository, you can build a new Docker image every time a code change is pushed to your code repository.

A build context is a Dockerfile and any files at a specific location. For an automated build, the build context is a repository containing a Dockerfile.

Automated Builds have several advantages:

	Images built in this way are built exactly as specified.

	The Dockerfile is available to anyone with access to your Docker Hub repository.

	Your repository is kept up-to-date with code changes automatically.

	Automated Builds are supported for both public and private repositories on both GitHub and Bitbucket.

2.1 Prerequisites

To use automated builds, you first must have an account on Docker Hub [https://hub.docker.com] and on the hosted repository provider (GitHub [https://github.com/] or Bitbucket [https://bitbucket.org/]). While Docker Hub supports linking both GitHub and Bitbucket repositories, here we will use a GitHub repository. If you don’t already have one, make sure you have a GitHub account. A basic account is free

Note

	If you have previously linked your Github or Bitbucket account, you must have chosen the Public and Private connection type. To view your current connection settings, log in to Docker Hub and choose Profile > Settings > Linked Accounts & Services.

	Building Windows containers is not supported.

2.2 Link your Docker Hub account to GitHub

	Log into Docker Hub.

	Click “Create Repository+”

[image: dockerhub_create]

	Click the Build Settings and select GitHub.

[image: dockerhub_createrepo]

The system prompts you to choose between Public and Private and Limited Access. The Public and Private connection type is required if you want to use the Automated Builds.

	Press Select under Public and Private connection type.
If you are not logged into GitHub, the system prompts you to enter GitHub credentials before prompting you to grant access. After you grant access to your code repository, the system returns you to Docker Hub and the link is complete.

[image: dockerhub_buildsettings]

After you grant access to your code repository, the system returns you to Docker Hub and the link is complete. For example, github linked hosted repository looks like this:

[image: dockerhub_autobuild]

2.3 Automated Container Builds

Automated build repositories rely on the integration with a version control system (GitHub or Gitlab) where your Dockerfile is kept.

Let’s create an automatic build for our container using the instructions below:

	Initialize git repository for the jupyter directory you created for your Dockerfile

$ git init
Initialized empty Git repository in /home/username/github/repository_name/

$ git status
On branch master

Initial commit

Untracked files:
(use "git add <file>..." to include in what will be committed)

 Dockerfileg

nothing added to commit but untracked files present (use "git add" to track)

$ git add * && git commit -m"Add files and folders"
[master (root-commit) cfdf021] Add files and folders
 4 files changed, 75 insertions(+)
 create mode 100644 Dockerfile

	Create a new repository on github by navigating to this url - https://github.com/new

[image: create_repo]

	Push the repository to github

[image: create_repo2]

$ git remote add origin https://github.com/username/jupyter.git

$ git push -u origin master
Counting objects: 7, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (7/7), 1.44 KiB | 0 bytes/s, done.
Total 7 (delta 0), reused 0 (delta 0)
To https://github.com/username/jupyter.git
 * [new branch] master -> master
Branch master set up to track remote branch master from origin.

	Select Create > Create Automated Build from Docker Hub.

	The system prompts you with a list of User/Organizations and code repositories.

	For now select your GitHub account from the User/Organizations list on the left. The list of repositories change.

	Pick the project to build. In this case jupyter. Type in “Container Camp Jupyter” in the Short Description box.

	If you have a long list of repos, use the filter box above the list to restrict the list. After you select the project, the system displays the Create Automated Build dialog.

[image: dockerhub_autobuilds]

Note

The dialog assumes some defaults which you can customize. By default, Docker builds images for each branch in your repository. It assumes the Dockerfile lives at the root of your source. When it builds an image, Docker tags it with the branch name.

	Customize the automated build by pressing the Click here to customize behavior link.

[image: auto_build-2.1]

Specify which code branches or tags to build from. You can build by a code branch or by an image tag. You can enter a specific value or use a regex to select multiple values. To see examples of regex, press the Show More link on the right of the page.

	Enter the master (default) for the name of the branch.

	Leave the Dockerfile location as is.

	Recall the file is in the root of your code repository.

	Specify 1.0 for the Tag Name.

	Click Create.

Important

During the build process, Docker copies the contents of your Dockerfile to Docker Hub. The Docker community (for public repositories) or approved team members/orgs (for private repositories) can then view the Dockerfile on your repository page.

The build process looks for a README.md in the same directory as your Dockerfile. If you have a README.md file in your repository, it is used in the repository as the full description. If you change the full description after a build, it’s overwritten the next time the Automated Build runs. To make changes, modify the README.md in your Git repository.

Warning

You can only trigger one build at a time and no more than one every five minutes. If you already have a build pending, or if you recently submitted a build request, Docker ignores new requests.

It can take a few minutes for your automated build job to be created. When the system is finished, it places you in the detail page for your Automated Build repository.

	Manually Trigger a Build

Before you trigger an automated build by pushing to your GitHub jupyter repo, you’ll trigger a manual build. Triggering a manual build ensures everything is working correctly.

From your automated build page choose Build Settings

[image: auto_build-5]

Press Trigger button and finally click Save Changes.

Note

Docker builds everything listed whenever a push is made to the code repository. If you specify a particular branch or tag, you can manually build that image by pressing the Trigger. If you use a regular expression syntax (regex) to define your build branch or tag, Docker does not give you the option to manually build.

[image: auto_build-6]

	Review the build results

The Build Details page shows a log of your build systems:

Navigate to the Build Details page.

Wait until your image build is done.

You may have to manually refresh the page and your build may take several minutes to complete.

[image: auto_build-7]

Exercise 1 (5-10 mins): Updating and automated building

	git add, commit and push to your GitHub or Gitlab repo

	Trigger automatic build with a new tag (2.0) on Docker Hub

	Pull your Docker image from Docker Hub to a new location.

	Run the instance to make sure it works

3. Managing Data in Docker

It is possible to store data within the writable layer of a container, but there are some limitations:

	The data doesn’t persist when that container is no longer running, and it can be difficult to get the data out of the container if another process needs it.

	A container’s writable layer is tightly coupled to the host machine where the container is running. You can’t easily move the data somewhere else.

	Its better to put your data into the container AFTER it is build - this keeps the container size smaller and easier to move across networks.

Docker offers three different ways to mount data into a container from the Docker host:

	volumes,

	bind mounts,

	tmpfs volumes.

When in doubt, volumes are almost always the right choice.

3.1 Volumes

Volumes are created and managed by Docker. You can create a new volume explicitly using the docker volume create command, or Docker can create a volume in the container when the container is built.

When you run a container, you can bring a directory from the host system into the container, and give it a new name and location using the -v or --volume flag.

$ docker run -v /home/username/your_data_folder:/data username/jupyter:latest

In the example above, you can mount a folder from your localhost, in your home user directory into the container as a new directory named /data.

When you create a Docker volume, it is stored within a directory on the Docker Linux host (/var/lib/docker/

Note

File location on Mac OS X is a bit different. `see here<https://timonweb.com/posts/getting-path-and-accessing-persistent-volumes-in-docker-for-mac/>`_.

A given volume can be mounted into multiple containers simultaneously. When no running container is using a volume, the volume is still available to Docker and is not removed automatically. You can remove unused volumes using docker volume prune command.

[image: volumes]

Volumes are often a better choice than persisting data in a container’s writable layer, because using a volume does not increase the size of containers using it, and the volume’s contents exist outside the lifecycle of a given container. While bind mounts (which we will see later) are dependent on the directory structure of the host machine, volumes are completely managed by Docker. Volumes have several advantages over bind mounts:

	Volumes are easier to back up or migrate than bind mounts.

	You can manage volumes using Docker CLI commands or the Docker API.

	Volumes work on both Linux and Windows containers.

	Volumes can be more safely shared among multiple containers.

	A new volume’s contents can be pre-populated by a container.

Note

If your container generates non-persistent state data, consider using a tmpfs mount to avoid storing the data anywhere permanently, and to increase the container’s performance by avoiding writing into the container’s writable layer.

3.1.1 Choose the -v or –mount flag for mounting volumes

Originally, the -v or --volume flag was used for standalone containers and the --mount flag was used for swarm services. However, starting with Docker 17.06, you can also use --mount with standalone containers. In general, --mount is more explicit and verbose. The biggest difference is that the -v syntax combines all the options together in one field, while the --mount syntax separates them. Here is a comparison of the syntax for each flag.

Tip

New users should use the --mount syntax. Experienced users may be more familiar with the -v or --volume syntax, but are encouraged to use --mount, because research has shown it to be easier to use.

-v or --volume: Consists of three fields, separated by colon characters (:). The fields must be in the correct order, and the meaning of each field is not immediately obvious.

	In the case of named volumes, the first field is the name of the volume, and is unique on a given host machine.

	The second field is the path where the file or directory are mounted in the container.

	The third field is optional, and is a comma-separated list of options, such as ro.

3.2 Bind mounts

--mount: Consists of multiple key-value pairs, separated by commas and each consisting of a <key>=<value> tuple. The --mount syntax is more verbose than -v or --volume, but the order of the keys is not significant, and the value of the flag is easier to understand.
- The type of the mount, which can be bind, volume, or tmpfs.
- The source of the mount. For named volumes, this is the name of the volume. For anonymous volumes, this field is omitted. May be specified as source or src.
- The destination takes as its value the path where the file or directory is mounted in the container. May be specified as destination, dst, or target.
- The readonly option, if present, causes the bind mount to be mounted into the container as read-only.

Note

The --mount and -v examples have the same end result.

3.3 Create and manage volumes

Unlike a bind mount, you can create and manage volumes outside the scope of any container.

Let’s create a volume

$ docker volume create my-vol

List volumes:

$ docker volume ls

local my-vol

Inspect a volume by looking at the Mount section in the docker volume inspect

$ docker volume inspect my-vol
[
 {
 "Driver": "local",
 "Labels": {},
 "Mountpoint": "/var/lib/docker/volumes/my-vol/_data",
 "Name": "my-vol",
 "Options": {},
 "Scope": "local"
 }
]

Remove a volume

$ docker volume rm my-vol

3.3.1 Populate a volume using a container

This example starts an nginx container and populates the new volume nginx-vol with the contents of the container’s /var/log/nginx directory, which is where Nginx stores its log files.

$ docker run -d -p 8889:80 --name=jupytertest --mount source=jupyter-vol,target=/var/log/jupyter username/jupyter:latest

So, we now have a copy of Jupyter volume running inside a Docker container on our machine, and our host machine’s port 5000 maps directly to that copy of Jupyter’s port 80. Let’s use curl to do a quick test request:

cat jupyter-vol/_data/access.log

Use docker inspect jupyter-vol to verify that the volume was created and mounted correctly. Look for the Mounts section:

"Mounts": [
 {
 "Type": "volume",
 "Name": "jupyter-vol",
 "Source": "/var/lib/docker/volumes/jupyter-vol/_data",
 "Destination": "/var/log/jupyter",
 "Driver": "local",
 "Mode": "z",
 "RW": true,
 "Propagation": ""
 }
],

This shows that the mount is a volume, it shows the correct source and destination, and that the mount is read-write.

After running either of these examples, run the following commands to clean up the containers and volumes.

$ docker stop jupytertest

$ docker rm jupytertest

$ docker volume rm jupyter-vol

3.4 Bind mounts

Bind mounts: When you use a bind mount, a file or directory on the host machine is mounted into a container.

Tip

If you are developing new Docker applications, consider using named volumes instead. You can’t use Docker CLI commands to directly manage bind mounts.

[image: bind_mount]

Warning

One side effect of using bind mounts, for better or for worse, is that you can change the host filesystem via processes running in a container, including creating, modifying, or deleting important system files or directories. This is a powerful ability which can have security implications, including impacting non-Docker processes on the host system.

If you use --mount to bind-mount a file or directory that does not yet exist on the Docker host, Docker does not automatically create it for you, but generates an error.

3.2.1 Start a container with a bind mount

$ mkdir data

$ docker run -p 8888:8888 --name jupytertest --mount type=bind,source="$(pwd)"/data,target=/var/log/jupyter username/jupyter:latest

Use docker inspect jupytertest to verify that the bind mount was created correctly. Look for the “Mounts” section

This shows that the mount is a bind mount, it shows the correct source and target, it shows that the mount is read-write, and that the propagation is set to rprivate.

Stop the container:

$ docker rm -f juptertest

3.4.1 Use a read-only bind mount

For some development applications, the container needs to write into the bind mount, so changes are propagated back to the Docker host. At other times, the container only needs read access.

This example modifies the one above but mounts the directory as a read-only bind mount, by adding ro to the (empty by default) list of options, after the mount point within the container. Where multiple options are present, separate them by commas.

$ docker run -d -p 8888:8888 --name jupytertest --mount type=bind,source="$(pwd)"/data,target=/var/log/jupyter,readonly username/jupyter:latest

Use docker inspect jupytertest to verify that the bind mount was created correctly. Look for the Mounts section:

Stop the container:

$ docker rm -f jupytertest

Remove the volume:

$ docker volume rm jupytertest

3.3 tmpfs Mounts

tmpfs mounts: A tmpfs mount is not persisted on disk, either on the Docker host or within a container. It can be used by a container during the lifetime of the container, to store non-persistent state or sensitive information. For instance, internally, swarm services use tmpfs mounts to mount secrets into a service’s containers.

[image: tmpfs]

Volumes and bind mounts are mounted into the container’s filesystem by default, and their contents are stored on the host machine. There may be cases where you do not want to store a container’s data on the host machine, but you also don’t want to write the data into the container’s writable layer, for performance or security reasons, or if the data relates to non-persistent application state. An example might be a temporary one-time password that the container’s application creates and uses as-needed. To give the container access to the data without writing it anywhere permanently, you can use a tmpfs mount, which is only stored in the host machine’s memory (or swap, if memory is low). When the container stops, the tmpfs mount is removed. If a container is committed, the tmpfs mount is not saved.

$ docker run -d -p 8888:8888 --name jupytertest --mount type=tmpfs,target=/var/log/jupyter username/jupyter:latest

Use docker inspect jupytertest to verify that the bind mount was created correctly. Look for the Mounts section:

$ docker inspect jupytertest

You can see from the above output that the Source filed is empty which indicates that the contents are not avaible on Docker host or host file system.

Stop the container:

$ docker rm -f jupytertest

Remove the volume:

$ docker volume rm jupytertest

4. Docker Compose for multi-container apps

Docker Compose is a tool for defining and running your multi-container Docker applications.

Main advantages of Docker compose include:

	Your applications can be defined in a YAML file where all the options that you used in docker run are now defined (Reproducibility).

	It allows you to manage your application as a single entity rather than dealing with individual containers (Simplicity).

Let’s now create a simple web app with Docker Compose using Flask (which you already seen before) and Redis. We will end up with a Flask container and a Redis container all on one host.

Note

The code for the above compose example is available here [https://github.com/upendrak/compose_flask]

	You’ll need a directory for your project on your host machine:

$ mkdir compose_flask && cd compose_flask

	Add the following to requirements.txt inside compose_flask directory:

flask
redis

	Copy and paste the following code into a new file called app.py inside compose_flask directory:

from flask import Flask
from redis import Redis

app = Flask(__name__)
redis = Redis(host='redis', port=6379)

@app.route('/')
def hello():
 redis.incr('hits')
 return 'This Compose/Flask demo has been viewed %s time(s).' % redis.get('hits')

if __name__ == "__main__":
 app.run(host="0.0.0.0", debug=True)

	Create a Dockerfile with the following code inside compose_flask directory:

FROM python:2.7
ADD . /code
WORKDIR /code
RUN pip install -r requirements.txt
CMD python app.py

	Add the following code to a new file, docker-compose.yml, in your project directory:

version: '2'
services:
 web:
 restart: always
 build: .
 ports:
 - "8888:5000"
 volumes:
 - .:/code
 depends_on:
 - redis
 redis:
 restart: always
 image: redis

A brief explanation of docker-compose.yml is as below:

	restart: always means that it will restart whenever it fails.

	We define two services, web and redis.

	The web service builds from the Dockerfile in the current directory.

	Forwards the container’s exposed port (5000) to port 8888 on the host.

	Mounts the project directory on the host to /code inside the container (allowing you to modify the code without having to rebuild the image).

	depends_on links the web service to the Redis service.

	The redis service uses the latest Redis image from Docker Hub.

Note

Docker for Mac and Docker Toolbox already include Compose along with other Docker apps, so Mac users do not need to install Compose separately.
Docker for Windows and Docker Toolbox already include Compose along with other Docker apps, so most Windows users do not need to install Compose separately.

For Linux users

sudo curl -L https://github.com/docker/compose/releases/download/1.19.0/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

	Build and Run with docker-compose up -d command

$ docker-compose up -d

Building web
Step 1/5 : FROM python:2.7
2.7: Pulling from library/python
f49cf87b52c1: Already exists
7b491c575b06: Already exists
b313b08bab3b: Already exists
51d6678c3f0e: Already exists
09f35bd58db2: Already exists
f7e0c30e74c6: Pull complete
c308c099d654: Pull complete
339478b61728: Pull complete
Digest: sha256:8cb593cb9cd1834429f0b4953a25617a8457e2c79b3e111c0f70bffd21acc467
Status: Downloaded newer image for python:2.7
 ---> 9e92c8430ba0
Step 2/5 : ADD . /code
 ---> 746bcecfc3c9
Step 3/5 : WORKDIR /code
 ---> c4cf3d6cb147
Removing intermediate container 84d850371a36
Step 4/5 : RUN pip install -r requirements.txt
 ---> Running in d74c2e1cfbf7
Collecting flask (from -r requirements.txt (line 1))
 Downloading Flask-0.12.2-py2.py3-none-any.whl (83kB)
Collecting redis (from -r requirements.txt (line 2))
 Downloading redis-2.10.6-py2.py3-none-any.whl (64kB)
Collecting itsdangerous>=0.21 (from flask->-r requirements.txt (line 1))
 Downloading itsdangerous-0.24.tar.gz (46kB)
Collecting Jinja2>=2.4 (from flask->-r requirements.txt (line 1))
 Downloading Jinja2-2.10-py2.py3-none-any.whl (126kB)
Collecting Werkzeug>=0.7 (from flask->-r requirements.txt (line 1))
 Downloading Werkzeug-0.14.1-py2.py3-none-any.whl (322kB)
Collecting click>=2.0 (from flask->-r requirements.txt (line 1))
 Downloading click-6.7-py2.py3-none-any.whl (71kB)
Collecting MarkupSafe>=0.23 (from Jinja2>=2.4->flask->-r requirements.txt (line 1))
 Downloading MarkupSafe-1.0.tar.gz
Building wheels for collected packages: itsdangerous, MarkupSafe
 Running setup.py bdist_wheel for itsdangerous: started
 Running setup.py bdist_wheel for itsdangerous: finished with status 'done'
 Stored in directory: /root/.cache/pip/wheels/fc/a8/66/24d655233c757e178d45dea2de22a04c6d92766abfb741129a
 Running setup.py bdist_wheel for MarkupSafe: started
 Running setup.py bdist_wheel for MarkupSafe: finished with status 'done'
 Stored in directory: /root/.cache/pip/wheels/88/a7/30/e39a54a87bcbe25308fa3ca64e8ddc75d9b3e5afa21ee32d57
Successfully built itsdangerous MarkupSafe
Installing collected packages: itsdangerous, MarkupSafe, Jinja2, Werkzeug, click, flask, redis
Successfully installed Jinja2-2.10 MarkupSafe-1.0 Werkzeug-0.14.1 click-6.7 flask-0.12.2 itsdangerous-0.24 redis-2.10.6
 ---> 5cc574ff32ed
Removing intermediate container d74c2e1cfbf7
Step 5/5 : CMD python app.py
 ---> Running in 3ddb7040e8be
 ---> e911b8e8979f
Removing intermediate container 3ddb7040e8be
Successfully built e911b8e8979f
Successfully tagged composeflask_web:latest

And that’s it! You should be able to see the Flask application running on http://localhost:8888 or <ipaddress>:8888

[image: docker-compose]

$ cat output.txt
Prediction of DecisionTreeClassifier:['apple' 'orange' 'apple']

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Introduction to R & RStudio

Setup

	You need to download R & RStudio:

	Download R [https://cran.r-project.org/]

	Download R Studio [https://www.rstudio.com/products/rstudio/download/#download]

	Move to the Applications folder.

	Open RStudio.

Go to Session -> Set Working Directory to set where you will pull data files from and/or save your code.

Introduction

We will learn how to:
- navigate & interact with R Studio

	UI of R Studio

	how to use “help”

	install packages

	upload data

	
	data structures

	
	strings, factors, numbers, integers

	vectors & arrays

	matrices & lists

	
	explore data

	
	data manipulation

	data subsetting

R Studio makes using R programming language easier to interact with and to keep track of projects.

Navigating & Interacting with R Studio

Basic Layout

|R Console|

The basic layout includes:
- Interactive R Console (left) <- most of your time will be spent here
- Environment/History (upper right)
- Files/Plots/Packages/Help/Viewer (lower right)

Once you open a new R script (File -> New File -> R Script), and editor panel should appear in the upper left.
R scripts are saved as .R files.
These can be rearranged by going into Preferences.

Calculating with R

Note spaces don’t matter unless it’s in the middle of an argument

Note R starts counting at 1, not at 0

Using R as a calculator

> 2+2
> 4

> 1 +
> + #R will let you know that the code is incomplete

> 2/10000
> 2e-04

Exercise:

	What is the output for 5e3?

	How would you add 5 and 3 and multiply the sum by 2?

Comparing things: Using logical operators

> 1 == 1 #spaces between logical arguments matter
> TRUE

> 1 < 2
> TRUE

> 1 >= 9
> FALSE

Other logical conditions: &, |, !

HELP!

help() is the most useful function in R. You will likely use this and Stack Overflow to help solve most of your problems (not life problems, you’re on your own for that).

help(plot)

Parts of the help file:
- Description

This describes what the function does.

	
	Usage

	This describes the formula and arguments for the function

	
	Arguments

	These are different inputs into the function that can be used.
The argument (e.g., x, y) do not always need to be specified.
For example,

plot(x = data.x, y = data.y)
plot(data.x, data.y)

are the same thing.

	
	Details

	Usually these state the outputs of the function, or any other nuance within the function that may not be obvious.

	
	See also

	This will link to similar functions, or functions that can be called with this function.

	
	Examples

	Some are better than others. Generally, though, this gives examples of the arguments most commonly used in the function.

Searching for help:
- type in error message (just delete words specific to your data)
- inlcude in package name
- type “CRAN” after to help search for R programming specifically

Installing packages

install.packages("packageName")

To install more than one package at once you can use the c("package1", "package2") concatenate:

install.packages(c("package1", "package2"))

Often installing a package will install its dependencies as well. You can set the dependency installation by hand using:

install.packages("packageName", dependencies=TRUE)
install.packages(c("package1", "package2"), dependencies=TRUE)

You can see installed packages with the following command:

installed.packages()

To use the package after it’s been loaded:

Uploading Data

There are many ways to upload data in the R environment depending on the document type you have.

#General reading
read.table("dataFile.txt", sep = "/t")

Exercise:

	What are the arguments for read.table?

	What arguments would you use to upload a .csv file using read.table()?

#.csv files
read.csv()

#reading in from an online source or path to the directory if you're not in the right working directory
read.table(path/to/file)

Data Structures

Types of Variables

	Character - text that cannot have calculations done on them

	e.g., “a”, “xyz”

	Numeric - numerical values include decimals and can have calculations performed on them

	e.g., 1, 1.5

	Integer - whole numbers only, and can also have calculations performed on them

	e.g., 2L (L stores it as an integer)

Logical - TRUE or FALSE

Exercise:

	What does the following return? What does it mean?

str(10)
str("10")

	Try calculations on the following.

	
	What works and what doesn’t? Why or why not?

10*2
"10"*2

	Errors v. Warnings:

	Errors are given when R cannot perform the calculation
Warnings mean that the function has run but perhaps with some issues.

Storing Variables

We can assign any of the types of data above in a “place holder”.
Variables are assignee using “<-“.

For example, we can store the number 10 in a letter to use later

a <- 10

NOTE Do not create variables that are already functions or arguments (e.g., c, T, F).
NOTE Do not overwrite variables.

Exercise:

	What does a*2 give you?

Vectors

Vectors are 1-D object that contain “like” data types.
You can create a string of variables and add to a vector using c(), which is short for concatenate.

Exercise:

	What are the outputs of the code below?

	Create your own vector using the vector() function.

x <- c(1, 2, 3, 4, 5)
y <- 1:5
z <- seq(1, 5, 1)

	Are x, y, and z all the same structure? If not, how would you make them all the same?

Adding to vectors: the concatenate function: c()

d <- 1
d <- c(d, 2)

	Try adding two to every numer in the vector “x”.

	
	How do you add two to every number in x?

What happens what you add a character to a vector?

ATOMIC VECTORS are vectors which cannot be simplified anymore, and therefore “$” cannot be used on them. Yes, this error happens a lot. Yes, it is frustrating. Good luck.

Matrices & Dataframes

A matrix and a dataframe are both 2-D objects that are made up of vectors.

Creating a dataframe using data.frame()

Exercise:

	Play with the different types of data in the data.frame(). What happens?

You can combine dataframes:

hello <- data.frame (1:26, letters, words = c("hey", "you"))
hi <- data.frame(1:26, letters, c("hey", "you"))
howdy <- data.frame(hello, hi)

How do you name the column with the numbers 1-26?

What are the column headers?
What happends when you do the following?

Adding columns and rows using cbind() and rbind()

cbind(hello, "goodbye")

We can call columns using $ in the form of data.frame$column or call them using the modifier data.frame[row#, column#]

Calling columns:

hello[,2] #[] are like an index
hello$letters

Subsetting:

Useful Functions to explore data types

View() #can also double click on dataframe inside the R environment tab
str()
summary()
class()
typeof()
length()
attributes() #can also click on dataframe inside the R environment tab
dim()
head()
tail()

Exercise

	What is the output?

hello[,-2]

Likewise, columns and rows can be removed using “-” as a modifier

You can save a dataframe using write.table() and write.csv().

NOTE do not overwrite your dataset!!

If you rerun a script, you may overwrite your results or new data. Put a “#” after use!

The R Environment

You can view your environment either by looking at the upper left tab or by typing the following:

ls() #see variables in your environment

You can remove objects using the rm() function.

Exercise:

	How would you remove “a” from the environment? How would you check?

Exploring Data

Data Manipulation

Create the following dataframe:

cats <- data.frame(coat = c("calico", "black", "tabby"),
 weight = c(2.1, 5.0,3.2),
 likes_string = c(1, 0, 1))
class(cats)

Let’s add!

cats$weight + 2
cats$coat + cats$coat

What are the outputs?

We can use the function “paste” to make more complex strings:

paste("My cat is", cats$coat)

What is the output?

Subsetting Data

Exercise:

	What is the function for subsetting data?

	What are the outputs?

x <- c(a=5.4, b=6.2, c=7.1, d=4.8, e=7.5) # we can name a vector 'on the fly'
#x is a vector
x[c(a,c),]
x[names(x) == "a"]
x[names(x) == "a" | "c"]
x[names(x) != "a"]

Terminal

Can run terminal in RStudio. This is useful if you want to run a program and still be able to use R, or if you need dependencies. Also, the terminal does not interact with the R environment.

Tools –> Terminal –> New Terminal

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

RStudio with Version Control

RStudio can be used with Git or SVN. For today’s lesson we’re going to be using Git with your new GitHub accounts.

Some things to remember about the platform

	You can pull other GitHub repositories using git clone via the RStudio terminal.

	Your local commits are not sent to GitHub until you initiate the repository with your GitHub username and password.

Instructions

	Create a GitHub Repository

	On your local computer, create a directory called ~/github and change into that directory

	Open RStudio and start a new Project: File > New Project > Version Control > Git. In the repository URL paste the URL of your new GitHub repository

	Save your new git repository to the newly created ~/github directory.

	Open the directory in RStudio and set the project folder as the workspace.

R Markdown

	Create a new .Rmd format file.

	Set the parameters (e.g. HTML, PDF, etc)

	Create an code block and specify the language, e.g.

Workflow R

R has many projects which deal with workflows [https://github.com/jdblischak/r-project-workflows]

We’re going to talk about the workflowr and drake

	Install Packages and depends

	Follow instructions for building a workflowr website [https://jdblischak.github.io/workflowr/articles/wflow-01-getting-started.html]

	Follow instructions for building a drake [https://ropensci.github.io/drake/] workflow

Self Paced

rOpenSci [https://github.com/ropensci] is a leader in the development of reproducible research. There are hundreds of repositories to explore for examples of research using R.

|CyverseLogo|_ |LearningCenter|_

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

GitHub Action and EHT Demo

Introduction

Building Docker images on your machine and then pushing it to
DockerHub manually is sometime cumbersome. Since we use Git and
GitHub to keep track of all our source codes anyway, it will be great
to ask GitHub to automatically build and push docker images for us
whenever we change our codes.

We will use one of the Event Horizon Telescope (EHT)’s imaging
pipeline as an example. The EHT is an international collaboration
with a science goal to take pictures of black holes. The EHT
published its visibility data on CyVerse [https://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/EHTC_FirstM87Results_Apr2019]
and its software pipeline on GitHub [https://github.com/eventhorizontelescope/2019-D01-02] .

Fork the EHT Pipeline

When you are on the EHT pipeline GitHub repository, first, click the
“Fork” badge/button to create your own repository.

In your own repository, go to “Settings” to rename your repository to
something readable for human, e.g., “eht-demo”.

Because we will need to connect to DockerHub to publish our image, go
to the “Secerts” tab in “Settings” and add the following two secrets:

DOCKERHUB_USERNAME : your Docker Hub username

DOCKERHUB_PASSWORD : your Docker Hub password

Create a Dockerfile

To edit your version of the pipeline repository, let’s clone it to
your “local” machines (laptop, desktop, atmosphere VM, etc).

git clone git@github.com:[GITHUB_USERNAME]/eht-demo.git

Then, change-directory into your local repository and create a
wrapper.sh script:

#!/bin/bash

python /usr/local/src/eht-imaging_pipeline.py "$@"

Turn it into an run-able script by

chmod 755 wrapper.sh

Then, add a new Dockerfile with the follow content:

FROM eventhorizontelescope/img-env

COPY eht-imaging/eht-imaging_pipeline.py /usr/local/src/
COPY wrapper.sh /usr/bin

WORKDIR /img
ENTRYPOINT ["/usr/bin/wrapper.sh"]

Commit all your files and push to GitHub:

git add .
git commit -m 'For building FOSS demo Docker image'
git push

Setup GitHub Action

Go back to your web browser and make sure that your own pipeline
repository is updated. Click the “Actions” tab. Because you have not
set up any GitHub Action, GitHub presents you many examples. Let’s
click on “Workflow for Python, Maven, Docker and more …” at the
bottom of the page and look for the “Docker image” example. Click
“Set up this workflow” as a starting point.

GitHub now presents you an online text editor that describes an Action
Workflow. Let’s just click “Start commit” to turn this into a Git
commit.

Once you are done, click the “Actions” tab again. You will see the
workflow is now set up. It’s probably still in the GitHub Action work
queue. Wait a bit and it will turn into a running state.

Your “Action” workflow should finish successfully. However, it built
an image call my-image-name inside the Action build machine.
The name is not right, and you cannot use this Docker image.

Edit GitHub Action

Click on the name your Action workflow and select the “Workflow file”
tab, then click the pencil icon on the top right, GitHub gives you an
online editor again. Update the dockerimage.yml file to:

name: Docker Image CI

on: [push]

jobs:

 build:

 runs-on: ubuntu-latest

 steps:
 - uses: actions/checkout@v2
 - name: Build the Docker image
 run: docker build . --file Dockerfile --tag ${{ secrets.DOCKERHUB_USERNAME }}/eht-demo
 - name: Login to Docker Hub
 run: echo ${{ secrets.DOCKERHUB_PASSWORD }} | docker login -u ${{ secrets.DOCKERHUB_USERNAME }} --password-stdin
 - name: Push to Docker Hub
 run: docker push ${{ secrets.DOCKERHUB_USERNAME }}/eht-demo:latest

Once you are done, commit it. And go back to “Actions” tab. Because
editing the Action workflow is itself a Git commit, it triggers GitHub
Action to rerun the workflow. If it works, you it should have built a
Docker image and push it to Docker Hub.

EHT Image Reconstruction

Now, we are ready to perform an EHT image reconstruction to create
your own black hole image!

First, because it will take some time to download the Docker image,
let’s start pulling it first onto your “local” machines (laptop,
desktop, atmosphere VM, etc) in the background.

docker pull [DOCKERHUB_USERNAME]/eht-demo > git-pull-log &

Let’s also create an empty work directory

mkdir ~/eht-demo
cd ~/eht-demo

Remember EHT published its data on CyVerse? Let’s download a data file:

wget https://de.cyverse.org/anon-files//iplant/home/shared/commons_repo/curated/EHTC_FirstM87Results_Apr2019/uvfits/SR1_M87_2017_095_lo_hops_netcal_StokesI.uvfits

You have both the data and software (in a Docker image). Let’s
perform the image reconstruction:

docker run --rm -v $PWD:/img [DOCKERHUB_USERNAME]/eht-demo -i SR1_M87_2017_095_lo_hops_netcal_StokesI.uvfits -o [NAME].fits --savepdf

It will take some time. And it may work or may not work—depending
on if you pull an old version of the pipeline repository, or a new
version.

If docker finished with an error message, you used the old version.
And it is a great opportunity to see how convenient to see how GitHub
Actions work. If docker finished without an error, congratulations,
you can skip the next paragraph.

Go to GitHub on your browser, open
eht-imaging/eht-imaging_pipeline.py, and click the pencil icon
to edit the file directly. Add the following two lines:

import matplotlib
matplotlib.use('Agg')

on line 50 and the commit from the GitHub website. Because GitHub
Actions “license” for changes on your repository, it will
automatically rebuild your Docker image. Once it is done, pull the
new Docker image by:

docker pull [DOCKERHUB_USERNAME]/eht-demo

And now you can rerun your analysis with the new Docker image!

Once it’s done, you will see two new files [NAME].fits and
[NAME].pdf on the local machines.

Here you go! You just reconstructed your own black hole image!

Exercise

OK this is cool so far. But the point of GitHub Actions is that it
will rerun the workflow whenever you commit and push your repository
to GitHub. So try to make some silly changes to your local Git
repository, push it to GitHub, and see Actions react to your edits.

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

GitHub Pages - a quick start

This is a quick introduction to GitHub Pages, a simple way to use GitHub to
set up a small website written in Markdown. This page won’t do everything,
but you can throw up a basic website, use themes, and extend it.

	Go to GitHub. Login, or if you don’t have an account get one and login.

	Go to the “+” icon on the upper right and select New repository.

	Enter a name for your repository (e.g. “profile”). Enter a description, and
leave the repository as public. Select “Initialize this repository with a README”. If desired select a license. Finally click Create repository.

	Look for the Settings menu (upper right, next to a “gear” icon). Scroll
down to GitHub Pages and choose master branch and save your selection. Then Choose a theme and select your theme. You will be asked to Commit changes.

	Your website will be visible at https ://GITHUBUSERNAME.github.io/REPONAME/.
(be sure to change GITHUBUSERNAME to your username, and REPONAME to the name
you selected for your repo.)

	You can edit your website by editing the readme file as desired.

Tip

You can preview how your Markdown looks using and editor like
Markdown Plus.

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

Index

License for CyVerse Documentation (Version 2.0 - May 2020)

Documentation contained in this repo is made available under at CC BY 4.0 License: https://creativecommons.org/licenses/by/4.0/legalcode

You may:

	Share—copy and redistribute the material in any medium or format

	Adapt—remix, transform, and build upon the material

<<<<<<< HEAD
for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow these license terms:

Attribution— You must give appropriate credit (mentioning that your work is derived from work that is Copyright (c) CyVerse and, where practical, linking to http://www.cyverse.org/), provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

No additional restrictions—You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. With the understanding that:

	You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.

	No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.

This license is superseded by and subject to any and all other polices of CyVerse as described at: http://www.cyverse.org/policies; CyVerse is based upon work supported by the National Science Foundation under Grant No. DBI-0735191 and DBI-1265383.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

for any purpose, even commercially. The licensor cannot revoke these freedoms as long as
you follow these license terms:

Attribution— You must give appropriate credit (mentioning that your work is derived
from work that is Copyright (c) CyVerse and, where practical, linking to
http://www.cyverse.org/), provide a link to the license, and indicate if changes were
made. You may do so in any reasonable manner, but not in any way that suggests the
licensor endorses you or your use.

No additional restrictions—You may not apply legal terms or technological measures that
legally restrict others from doing anything the license permits. With the understanding
that:

	You do not have to comply with the license for elements of the material in the public
domain or where your use is permitted by an applicable exception or limitation.

	No warranties are given. The license may not give you all of the permissions necessary
for your intended use. For example, other rights such as publicity, privacy, or moral
rights may limit how you use the material.

This license is superseded by and subject to any and all other polices of CyVerse as
described at: http://www.cyverse.org/policies; CyVerse is based upon work supported by
the National Science Foundation under Grant No. DBI-0735191, DBI-1265383, and DBI-1743442

Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

e8ccd3b52784fdedab398cd92f975326702a4903

foss-2020

Documenation for the 2020 CyVerse Learning Institute Foundations of Open Science Skills course.

Course will take place February 17-21, 2020, in Tucson, Arizona.

Contents are organized by subject, rather than day, with links to each day from the agenda (getting_started/agenda.rst).

name: Triage for Release
about: Checklist for upgrading to Learning Center 2.0
title: Triage for [Project Title] Release [X.X.X]
labels: 2.0 Release
assignees: ‘’

This is a checklist issue. As we review each repo we should check the following
items.

1. Check on file versions (all files below should have a version comment in the first line of the file)

	[] misc/static/cyverse.css is version 2.0

	[] misc/static/cyverse.js is version 2.0

	[] misc/static/detail-expand.css is version 2.0

	[] misc/static/detail-expand.js is version 2.0

	[] misc/static/intercom-script-for-learning.js is version 2.0

	[] misc/static/question-answer.js is version 2.0

	[] misc/static/jquery.tablesorter.min.js is version 2.0

	[] misc/cyverse_spinx_conf.py is version 2.0

	[] conf.py is version 2.0 and you have updated the name of the documentation (check the project =’ line, your index.rst should have
the appropriate name)

	[] cyverse_rst_defined_substitutions.txt is version 2.0

	[] License.md is version 2.0

2. Check on the following required formatting for all pages

	[] All .rst pages begin with the following

.. include:: cyverse_rst_defined_substitutions.txt
.. include:: custom_urls.txt

 |CyVerse_logo|_

|Home_Icon|_
`Learning Center Home <http://learning.cyverse.org/>`_

	[] Documentation contains maintainer info on index.rst or the appropriate
first page. This should be placed directly before the table of contents.

Manual Maintainer(s)

Who to contact if this manual needs fixing. You can also email
`Tutorials@CyVerse.org <Tutorials@CyVerse.org>`_

.. list-table::
 :header-rows: 1

 * - Maintainer
 - Institution
 - Contact
 * - Your Name
 - CyVerse / UA
 - Yourname@email.com

	[] Documentation contains the fix/improve instructions on all .rst pages

Fix or improve this documentation

- Search for an answer:
 |CyVerse Learning Center|
- Ask us for help:
 click |Intercom| on the lower right-hand side of the page
- Report an issue or submit a change:
 |Github Repo Link|
- Send feedback: `Tutorials@CyVerse.org <Tutorials@CyVerse.org>`_

	[] All hyperlinks in documentation are on the repo’s custom_urls.txt or cyverse_rst_defined_substitutions.txt
Note: We want to avoid:

	Best practice is to AVOID inline hyperlinks

	Where possible links should NOT be on the .rst page but on a single
document that is included. (e.g. custom_urls.txt or cyverse_rst_defined_substitutions.txt)

	custom_urls.txt should be for URLS specific to that repo

	cyverse_rst_defined_substitutions.txt is a list of generic links to
other CyVerse and Learning Center pages

	Links should have the form below and open in a new tab:

 .. |Link Title| raw:: html

 Link Title

	[] Check the |Github Repo Link| on each .rst page and ensure it links to the correct GitHub repository for this documentation.

3. Overall quality

	[] Maintainer is assigned and has approved the content

	[] Editor has checked for quality (spelling, formatting, etc.)

	[] Sample/test data is available with anonymous/public read access
in the appropriate directory at /iplant/home/shared/cyverse_training

 Importing Docker .rst

Docker hands-on exercises

Use case 1: Deploy a custom Docker image

	Download the sample code from https://github.com/Azure-Samples/docker-django-webapp-linux.git

	Build the image using the Dockerfile in that repo using docker build command

	Run an instance from that image

	Verify the web app and container are functioning correctly

Use case 2: Simple Bioinformatics example

Let’s say if you find a cool tool/software and want to run it on your computer and as we found out in the morning session, it’s not always easy to install the tool onto your computer or on a server natively. Since this workshop is about containers, let’s containerize this tool.

For this simple hands-on exercise, let’s containerize fastqe tool - https://github.com/lonsbio/fastqe. For those of you who are not from Bioinformatics, this tool generates read one or more FASTQ files, then it will compute quality stats for each file and print those stats as emoji… for some reason.

[image: fastqe]

Given a fastq file in Illumina 1.8+/Sanger format, calculate the mean (rounded) score for each position and print a corresponding emoji!

Tip

Natively you would install this tool like pip install fastqe. Now think of how you can dockerize this with appropriate base image and dependencies

After dockerizing the tool, for this exercise we don’t have to bind mount the volume but just print the fastqe help and make sure that it is actually working.

Tip

Natively you would print the help of the tool as fastqe -h

1. Data Management Hands-on

Form the “Introduction to Docker” session this morning, we learned that a running Docker container is an isolated environment created from a Docker image. This means, although it is possible to store data within the “writable layer” of a container, there are some limitations:

	The data doesn’t persist when that container is no longer running, and it can be difficult to get the data out of the container if another process needs it.

	A container’s writable layer is tightly coupled to the host machine where the container is running. You can’t easily move the data somewhere else.

Docker offers three different ways to mount data into a container from the Docker host: volumes, bind mounts, or tmpfs volumes. For simplicity, we will only use bind mounts in our hands-on session, even though volumes is the more powerful and usable option for most use cases.

1.1 Bind mounts

Bind mounts: When you use a bind mount, a file or directory on the host machine is mounted into a container.

[image: ../_images/bind_mount.png]

Warning

A side effect of using bind mounts, for better or for worse, is that you can change the host filesystem via processes running in a container, including creating, modifying, or deleting important system files or directories. This is a powerful ability which can have security implications, including impacting non-Docker processes on the host system.

If you use --mount to bind-mount a file or directory that does not yet exist on the Docker host, Docker does not automatically create it for you, but generates an error.

Let’s clone a git repository to obtain our data sets:

$ git clone https://github.com/CyVerse-learning-materials/ccw-2019-astro.git

We can cd into the HOPS work directory, and mount it to /root as we launch the eventhorizontelescope/hops container:

$ cd ccw-2019-astro/hops
$ ls
1234
$ docker run -it --rm --name hops -v $PWD:/root eventhorizontelescope/hops
Setup HOPS v3.19 with HOPS_ROOT=/root for x86_64-3.19

You will start at the /root work directory and the host data 1234 is available in it:

$ pwd
/root
$ ls
1234

You can open another terminal and use docker inspect hops | grep -A9 Mounts to verify that the bind mount was created correctly. Looking for the “Mounts” section,

$ docker inspect hops | grep -A9 Mounts
"Mounts": [
 {
 "Type": "bind",
 "Source": "/Users/ckchan/ccw-2019-astro/hops",
 "Destination": "/root",
 "Mode": "",
 "RW": true,
 "Propagation": "rprivate"
 }
],

This shows that the mount is a bind mount with correct source and target. It also shows that the mount is read-write, and that the propagation is set to rprivate.

Use case 1: Processing VLBI data with HOPS in Docker

HOPS stands for the Haystack Observatory Postprocessing System. It is a standard data analysis tool in Very-long-baseline interferometry (VLBI). HOPS has a long history and it depends on legacy libraries. This makes it difficult to compile on modern Unix/Linux systems. Nevertheless, with Docker, you have already launched a HOPS envirnment that you can analysis VLBI data!

The most basic step in analysis VLBI is called “fringe fitting”, which we will perform in the running HOPS container by

$ ls 1234/No0055/
3C279.zxxerd L..zxxerd LL..zxxerd LW..zxxerd W..zxxerd WW..zxxerd
$ fourfit 1234
fourfit: Warning: No valid data for this pass for pol 2
fourfit: Warning: No valid data for this pass for pol 3
$ ls 1234/No0055/
3C279.zxxerd LL..zxxerd LL.B.2.zxxerd LW.B.3.zxxerd W..zxxerd WW.B.5.zxxerd
L..zxxerd LL.B.1.zxxerd LW..zxxerd LW.B.4.zxxerd WW..zxxerd

fourfit reads in the correlated data and create the so called “fringe files”. The warnings are normal because there are missing polarizations in the data. In order to see the result of the fringe fitting, you can use fplot:

$ fplot -d %04d.ps 1234
$ ls
0000.ps 0001.ps 0002.ps 0003.ps 0004.ps 1234

Congratulations! You just created 4 fringe plots that show all important information of the VLBI experiment! Now you can exit your HOPS container and open them on your host machine.

2. Jupyter Notebook Hands-on

Mounting a host directory is one way to make a container connect with the outside work. Another possible is through network by exposing a port.

Use case 2: Processing Galaxy Simulation with Jupyter in Docker

In this second hands-on, we will use Docker to run a “ready to go” Jupyter notebook in a container. We will expose the port 8888 from the container to the localhost so that you can connect to the notebook.

Inside the ccw-2019-astro git repository that you downloaded earlier, there is a sample Galaxy simulation:

 $ pwd
 /Users/ckchan/ccw-2019-astro/hops
 $ cd ../galaxy/
 $ pwd
 /Users/ckchan/ccw-2019-astro/galaxy

 # Specify the uid of the jovyan user. Useful to mount host volumes with specific file ownership. For this option to take effect, you must run the container with --user root

 $ docker run -it --rm -v $PWD:/home/jovyan/work -p 8888:8888 -e NB_UID=$(id -u) --user root astrocontainers/jupyter
 Set username to: jovyan
 usermod: no changes
 Set jovyan UID to: 1329
 Executing the command: jupyter notebook
 [I 23:36:09.446 NotebookApp] Writing notebook server cookie secret to /home/jovyan/.local/share/jupyter/runtime/notebook_cookie_secret
 [W 23:36:09.686 NotebookApp] WARNING: The notebook server is listening on all IP addresses and not using encryption. This is not recommended.
 [I 23:36:09.722 NotebookApp] JupyterLab beta preview extension loaded from /opt/conda/lib/python3.6/site-packages/jupyterlab
 [I 23:36:09.722 NotebookApp] JupyterLab application directory is /opt/conda/share/jupyter/lab
 [I 23:36:09.730 NotebookApp] Serving notebooks from local directory: /home/jovyan
 [I 23:36:09.730 NotebookApp] 0 active kernels
 [I 23:36:09.730 NotebookApp] The Jupyter Notebook is running at:
 [I 23:36:09.730 NotebookApp] http://[all ip addresses on your system]:8888/?token=a81dbeec92b286df393bb484fdf53efffab410fd64ec8702
 [I 23:36:09.730 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
 [C 23:36:09.731 NotebookApp]
 Copy/paste this URL into your browser when you connect for the first time,
to login with a token:
 http://localhost:8888/?token=dfb50de6c1da091fd62336ac52cdb88de5fe339eb0faf478

The last line is a URL that we need to copy and paste into our browser to access our new Jupyter Notebook:

http://localhost:8888/?token=dfb50de6c1da091fd62336ac52cdb88de5fe339eb0faf478

Warning

Do not copy and paste the above URL in your browser as this URL is specific to my environment.

[image: ../_images/jn_login.png]
You should be greeted by your own containerised Jupyter service! Now open galaxy/InClassLab7_Template_wSolutions.ipynb and try analysis a Galaxy simulation!

[image: ../_images/jn_galaxy.png]
To shut down the container, simply hit Ctrl-C in the terminal/command prompt twice. Your work will all be saved on your actual machine in the path we set in our Docker compose file. And there you have it—a quick and easy way to start using Jupyter notebooks with the magic of Docker.

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Discovery Environment

[image: DE_icon]

DE Features

	Use hundreds of bioinformatics Apps without the command line (or with, if you prefer)

	Batch and interactive modes

	Seamlessly integrated with data and high performance computing – not dependent on your hardware

	Create and publish Apps and workflows so anyone can use them

	Analysis history and provenance – “avoid forensic bioinformatics”

	Securetly and easily manage, share, and publish data

Using the DE

Data Management [https://github.com/CyVerse-learning-materials/foss-2020/tree/master/CyVerse/de-data-manage.rst]
Data Analysis [https://github.com/CyVerse-learning-materials/foss-2020/tree/master/CyVerse/de-data-analysis.rst]

Additional resources

	DE Guide [https://learning.cyverse.org/projects/discovery-environment-guide/en/latest/]

	DE Manual [https://wiki.cyverse.org/wiki/display/DEmanual/Table+of+Contents]

	Using CyVerse for a shared project [https://learning.cyverse.org/projects/cyverse-group-project-quickstart/en/latest/index.html?highlight=group%20project]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Creating Workflows

[image: DE_icon]

Additional resources

	DE Guide [https://learning.cyverse.org/projects/discovery-environment-guide/en/latest/]

	DE Manual [https://wiki.cyverse.org/wiki/display/DEmanual/Table+of+Contents]

	Using CyVerse for a shared project [https://learning.cyverse.org/projects/cyverse-group-project-quickstart/en/latest/index.html?highlight=group%20project]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

About CyVerse

CyVerse Vision: Transforming science through data-driven discovery.

CyVerse Mission: Design, deploy, and expand a national
cyberinfrastructure for life sciences research and train scientists in
its use. CyVerse provides life scientists with powerful computational
infrastructure to handle huge datasets and complex analyses, thus
enabling data-driven discovery. Our powerful extensible platforms
provide data storage, bioinformatics tools, image analyses, cloud
services, APIs, and more.

Originally created as the iPlant Collaborative to serve
U.S. plant science communities, the cyberinfrastructure we have built is germane
to all life sciences disciplines and works equally well on data from
plants, animals, or microbes. Thus, iPlant was renamed CyVerse to reflect the broader community now served by our infrastructure. By democratizing access to supercomputing
capabilities, we provide a crucial resource to enable scientists to find
solutions for the future. CyVerse is of, by, and for the community, and community-driven needs
shape our mission. We rely on your feedback to provide the
infrastructure you need most to advance your science, development, and
educational agenda.

CyVerse Homepage: http://www.cyverse.org

Funding and Citations

CyVerse is funded entirely by the National Science Foundation under
Award Numbers DBI-0735191, DBI-1265383 and DBI-1743442.

Please cite CyVerse appropriately when you make use of our resources,
CyVerse citation
policy [http://www.cyverse.org/cite-cyverse]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Location

FOSS will be held in the Health Sciences Innovation Building (HSIB)(UA Building #216) [https://goo.gl/maps/mEMjXTBcfKRbexiu9], located at 1670 E Drachmann St.

Important

Due to scheduling conflicts with other courses, we will be switching rooms and floors in the HSIB building each day.

	Day

	Monday

	Tuesday

	Wednesday

	Thursday

	Friday

	Room #

	642

	531

	642

	640

	640

UA LIBRARY CATALYST STUDIOS FIELD TRIP 2/20 1830-2000hrs

Catalyst Studios are located inside the UA Main Library [https://goo.gl/maps/PNZ4Ws5NGTJ5nbtP9]

SERVICES

HSIB is adjacent the Banner University Medical Center. In the event of a medical emergency, attendees may be transported to Banner, or to the nearest urgent care [https://goo.gl/maps/ZkLMyDcDQPQEAAia9] facility.

Lactation rooms are available in HSIB 406 and in BSRL on 2nd floor – ask Tina if you need help locating them.

PARKING

Nearest public parking is the Highland Garage, about 3 blocks west of HSIB ($1/hr with $8/day max) or you can take the Purple or Green CatTran shuttle to the northern terminus (the AHSL Library stop).

HSIB is an approximate 10 minute walk from The Aloft Hotel.

UArizona Campus Map: https://map.arizona.edu/

CatTran Route Map: https://parking.arizona.edu/cattran/cat-tran-routes/

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Continuous Integration

Continous Integration (CI) [https://en.wikipedia.org/wiki/Continuous_integration] is a practice of checking code repositories (typically a few times a day) to test for changes which may cause failures.

CI can be integrated into either scientific programming workflows or into code development

The most popular CI tools are:

	Travis CI [https://travis-ci.org/] - fast, easy to set up, cloud based

	Circle CI [https://circleci.com/] - fast, easy to set up, cloud based

	Jenkins [https://jenkins.io/] - free, can be hosted internally (requires server), highly customizable (plugins)

When to use CI?

	building or hosting services to a community

	developing versioned copies of containers for public consumption

	DevOps + Data Science

Travis CI

Setup [https://docs.travis-ci.com/user/tutorial/]

Circle CI

Setup [https://circleci.com/docs/enterprise/quick-start/]

Jenkins

Jenkins is a bit harder to set up because you need a dedicated server

Setup [https://jenkins.io/doc/book/installing/]

GitHub Actions

GitHub now offers ‘actions’ which serve as an integrated CI for your repositories [https://help.github.com/en/actions/building-and-testing-code-with-continuous-integration/setting-up-continuous-integration-using-github-actions]

Badges

Status badges can be embedded in a README.md. Badges let you show the state of code or documentation.

You can view a diverse list of different badges on Shields.io [https://shields.io/]

Different Badge Styles

Now you can pass the style GET argument,
to get custom styled badges same as you would for shields.io.
If no argument is passed, flat is used as default.

	STYLE

	BADGE

	flat

	[image: Flat Badge]

	flat-square

	[image: Flat-Square Badge]

	for-the-badge

	[image: Badge]

	plastic

	[image: Plastic Badge]

	social

	[image: Social Badge]

Self paced

Circle vs Jenkins vs Travis [https://stackshare.io/stackups/circleci-vs-jenkins-vs-travis-ci]

Fix or improve this documentation:

	On Github: Github Repo Link

	Send feedback: Tutorials@CyVerse.org

 _images/fastqe.png
In [2]: mean_emoji("ERR048396_1.fastqg")

RREORCOADALSNO000000000N000000VRNOVCOVVVRDO®
V0000 000000000RCRARRRARAAARCOOOOOER

In [3]: mean _emoji("ERR048396_2.fastq")

0000000000000 0000000RR0R0RR0R 08
fSALAALAARSSLAASARAARBRARRDYYbbBA

_images/foss-main.png
HOW PO I
WRITE A GREAT
DATA MANAGEMENT
PLAN TO GET THAT
NEXT GRANT?

HOW PO I
SCALE MY ANALYSES
TO PROCESS ALL
OF THESE DATA?

FINISH THIS
ANALYSIS AND
PUBLISH?

_images/dockerhub_createrepo.png
U‘docker Explore Repositories Organizations GetHelp ~ tswetnam ’

Repositories Create Using 1 of 1 private repositories. Get more

Create Repository Pro tip

You may push a new image to this repository using the CLI:

tswetnam ¥ | Name
docker tag local-image:tagname new-repo:tagname
docker push new-repo:tagname
Description
Make sure to change tagname with your desired image repository
tag.
Visibility

Using 1 of 1 private repositories. Get more

@ Public ® Private &
Public repositories appear in Docker Only you can view private repositories
Hub search results

Build Settings (optional)

Autobuild triggers a new build with every git push to your source code repository. Learn More.

O v

Connected Disconnected

_images/evolutionofcyverse.png
funding renewal

iPlant 2008 iPlant 2013 CyVerse 2016
Empowering a Cyberinfrastructure for Transforming Science Through
New Plant Biology

Life Sciences Data-Driven Discovery

_images/git-logo.png

_static/up-pressed.png

_images/gitrepo.png
Environment History Connections Git -]

= piff = vl Commit =& Pull -~ 4 Push (% & - %= master v (O]
Staged Status - Path

O .gitignore
0O [@ README.md
(@] fos_xx_test.Rproj

_static/up.png

_static/plus.png

_images/dockerhub_buildsettings.png
Build Settings (optional)

Autobuild triggers a new build with every git push to your source code repository. Learn More.

O v

Connected Disconnected

O tyson-swetnam X v cc-camp X v

v Click here to customize the build settings

BUILD RULES +

The build rules below specify how to build your source into Docker images.

Source Type Source Docker Tag Dockerfile Build
location Caching
Branch ~ master latest Dockerfile @ []

» View example build rules

_images/dockerhub_create.png
. Organizations
tswetnam v QU Search by repository name... g

_images/dockerhub_autobuild.png
Explore Repositories Organizations GetHelp ~ tswetnam ¥ ‘

Repositories tswetnam / emsi-rstudio Builds Using 1 of 1 private repositories. Get more

General Tags Builds Timeline Collaborators Webhooks Settings

Configure Automated Builds

Build Activity
Overview of your build activity of the last 19 builds Queue W Success mFailed mm Canceled
270 min

180 min

90 min

-1 L]
Automated Builds
Autobuild triggers a new build with every git push to your source code repository. Learn More.
O tyson-swetnam/emsi | Use Docker Hub's infrastructure | Autotests: Internal and External Pull Requests
Docker Tag Source Build Status Autobuild Build caching

3.5.2 master SUCCESS v v Trigger P

_images/dockerhub_autobuilds.png
s Organizations Get Help tswetnam

Repositories tswetnam / emsi-rstudio ~ Builds ~ Edit Using 1 of 1 private repositories. Get more

General Tags Builds Timeline Collaborators ~Webhooks Settings

Build configurations

SOURCE REPOSITORY O tyson-swetnam x~ emsi x v

NOTE: Changing source repository may affect existing build rules.

BUILD LOCATION Build on Docker Hub's infrastructure

AUTOTEST O off
QO Internal Pull Requests

@ Internal and External Pull Requests

REPOSITORY LINKS O off

@ Enable for Base Image ()

BUILD RULES +

The build rules below specify how to build your source into Docker images.

Source Type Source Docker Tag Dockerfile Build @ Autobuild Build
location Context Caching
Branch ~ aster 352 Dockerfile ~ /docker/rstud =) @]

» View example build rules

BUILD ENVIRONMENT VARIABLES +

Delete Cancel m Save and Build

Build triggers

Trigger your Automated Build by sending a POST to a specific endpoint.

Trigger name +

Name Trigger Url

nav.xhtml

 Table of Contents

 		
 CyVerse Learning - Foundations of Open Science Skills (FOSS) Online 2020

 		
 Before FOSS Starts

 		
 Pre-FOSS Setup

 		
 Schedule

 		
 Instructors

 		
 CyVerse Staff

 		
 Glossary & Acronyms

 		
 About FOSS

 		
 Learning Objectives

 		
 Approach

 		
 Code of Conduct

 		
 Open Science Introductory Activity

 		
 Planning your own Open Science lab

 		
 Collaboration Culture and Roles

 		
 Command Line and the Unix Shell

 		
 Setup

 		
 Background

 		
 The Shell

 		
 Navigating Files and Directories

 		
 File System

 		
 Print working directory (pwd)

 		
 List files and directories (ls)

 		
 Change directory (cd)

 		
 Working with Files and Directories

 		
 Creating directories (mkdir)

 		
 Creating a text files

 		
 Moving files and directories (mv)

 		
 Copying Files and Directories (cp)

 		
 Removing files and directories (rm)

 		
 Operations with multiple files and directories

 		
 Other Useful Tools and Commands

 		
 sudo

 		
 head

 		
 tail

 		
 history

 		
 grep

 		
 find

 		
 echo

 		
 >

 		
 >>

 		
 |

 		
 Getting help and further learning

 		
 Basics of Linux

 		
 Common Linux Operating Systems

 		
 Installing Linux

 		
 Desktop-based Distributions

 		
 Windows Subsystem for Linux

 		
 Windows Linux Dual boot

 		
 Package Managers

 		
 Self Paced

 		
 Introduction to Reproducible Science

 		
 Reproducibility Tutorial

 		
 Communication

 		
 Internal

 		
 Other popular alternatives

 		
 External

 		
 Self-Paced Material

 		
 GitHub

 		
 Navigating & Interacting with GitHub

 		
 Basic Layout

 		
 Add a Collaborator

 		
 Create a Repo Online & Locally

 		
 Interact with GitHub

 		
 Advanced

 		
 Etc.

 		
 Git cheat sheet

 		
 CI/CD

 		
 Continuous Development

 		
 Agile

 		
 Waterfall

 		
 Continuous Integration

 		
 When to use CI?

 		
 Travis CI

 		
 Circle CI

 		
 Jenkins

 		
 GitHub Actions

 		
 Badges

 		
 Self paced

 		
 Websites & Documentation

 		
 Some things to remember

 		
 ReadTheDocs

 		
 Bookdown

 		
 GitHub Pages

 		
 Confluence Wiki

 		
 Build your own Website

 		
 ReadTheDocs

 		
 Bookdown

 		
 GitHub Pages

 		
 CyVerse Confluence Wiki

 		
 Methodology

 		
 Data Management Overview

 		
 Why should you care about data management?

 		
 Data Management Basics

 		
 The Data Life Cycle

 		
 Data Types

 		
 Best practices for the data life cycle

 		
 FAIR data

 		
 References and Resources

 		
 FAIR Data

 		
 FAIR Principles

 		
 CARE Principles

 		
 FAIR - TLC

 		
 Hands on Exercise - Metadata in CyVerse

 		
 References and Resources

 		
 Data Management Plans (DMP)

 		
 Elements of a good DMP

 		
 Machine actionable DMPs

 		
 Tools for DMPs

 		
 References and Resources

 		
 Data Management Tools

 		
 CyVerse Data Commons

 		
 About CyVerse

 		
 What is Cyberinfrastructure?

 		
 User Portal

 		
 Data Store

 		
 Discovery Environment

 		
 Atmosphere

 		
 Bisque

 		
 DNA Subway

 		
 Data Commons

 		
 Science APIs

 		
 SciApps

 		
 Powered by CyVerse

 		
 The CyVerse Learning Center

 		
 The CyVerse Wiki

 		
 Intercom

 		
 Accessing Data Store

 		
 Discovery Environment Interface

 		
 iCommands

 		
 CyberDuck

 		
 WebDAV

 		
 Which method to choose?

 		
 CyVerse Data Commons

 		
 Data Publication

 		
 Additional Resources

 		
 Discovery Environment - Data Management

 		
 DE Basics Walkthrough

 		
 Data Window

 		
 Using metadata in the DE

 		
 Advanced Metadata Usage

 		
 Additional resources

 		
 Discovery Environment - Data Analysis

 		
 Why use the DE?

 		
 Apps Window

 		
 Finding Apps

 		
 Types of apps

 		
 Launch an executable analysis

 		
 Analyses window

 		
 Launch an interactive analysis (VICE)

 		
 Additional resources

 		
 Discovery Environment - Tools & Apps

 		
 Tool Integration into the DE

 		
 Building an App for Your Tool

 		
 Discovery Environment - VICE

 		
 Create a VICE app

 		
 Version control using Git within RStudio

 		
 Sharing VICE apps with collaborators

 		
 Specific instructions for launching VICE applications

 		
 Introduction to Cloud Computing

 		
 Atmosphere

 		
 Virtual Machines on Atmosphere or Jetstream

 		
 Provision VM

 		
 Login

 		
 Create a Project

 		
 Start a new Instance

 		
 Accessing the Shell

 		
 EZ Installation of Project Jupyter

 		
 Installing RStudio-Server

 		
 Hands On

 		
 Establishing a Secure Connection

 		
 Research Cyberinfrastructure associated with CyVerse

 		
 XSEDE

 		
 Jetstream

 		
 TACC

 		
 Open Science Grid

 		
 CyVerse Powered By

 		
 Other Cyberinfrastructure Projects

 		
 National Groups

 		
 Domain Specific Cyberinfrastructures

 		
 Funding Opportunities

 		
 National Science Foundation

 		
 National Institutes of Health

 		
 Other US Federal

 		
 Foundations

 		
 Big 3

 		
 Introduction to containers

 		
 What is a container?

 		
 Why use containers?

 		
 Working with containers

 		
 Docker

 		
 Singularity

 		
 Kubernetes

 		
 Finding pre-built images

 		
 Docker Hub

 		
 BioContainers Registry

 		
 Quay

 		
 Hands-on

 		
 How to install Docker

 		
 Get data to use with your container

 		
 Use â��docker pullâ�� to get the image

 		
 Use the â��docker runâ�� command to run the container

 		
 What it All Means

 		
 Useful Links

 		
 Launching a Docker app on Atmosphere

 		
 Introduction to Docker

 		
 1. Prerequisites

 		
 2. Docker Installation

 		
 2.1 Testing Docker installation

 		
 3. Running Docker containers from prebuilt images

 		
 4. Build Docker images which contain your own code

 		
 4.1 Deploying a command-line app

 		
 4.2 Deploying a Jupyter Notebook

 		
 5. Dockerfile commands summary

 		
 6. Demos

 		
 6.1 Portainer

 		
 6.2 Play-with-docker (PWD)

 		
 Advanced Docker

 		
 1. Docker Registries

 		
 1.1 Popular Registries

 		
 1.2 Private repositories

 		
 2. Automated Docker image building from GitHub

 		
 2.1 Prerequisites

 		
 2.2 Link your Docker Hub account to GitHub

 		
 2.3 Automated Container Builds

 		
 Exercise 1 (5-10 mins): Updating and automated building

 		
 3. Managing Data in Docker

 		
 3.1 Volumes

 		
 3.4 Bind mounts

 		
 3.3 tmpfs Mounts

 		
 4. Docker Compose for multi-container apps

 		
 Introduction to R & RStudio

 		
 Setup

 		
 Introduction

 		
 Navigating & Interacting with R Studio

 		
 Basic Layout

 		
 Calculating with R

 		
 HELP!

 		
 Installing packages

 		
 Uploading Data

 		
 Data Structures

 		
 Types of Variables

 		
 Storing Variables

 		
 Vectors

 		
 Matrices & Dataframes

 		
 The R Environment

 		
 Exploring Data

 		
 Data Manipulation

 		
 Subsetting Data

 		
 Terminal

 		
 RStudio with Version Control

 		
 Instructions

 		
 R Markdown

 		
 Workflow R

 		
 Self Paced

 		
 GitHub Action and EHT Demo

 		
 Introduction

 		
 Fork the EHT Pipeline

 		
 Create a Dockerfile

 		
 Setup GitHub Action

 		
 Edit GitHub Action

 		
 EHT Image Reconstruction

 		
 Exercise

 		
 GitHub Pages - a quick start

_images/DE_analyses.png
@ CyVerse Discovery Environment

n

£~ Analyses

View App Type

= Analyses c Refresh All v All v Q

Start Date \» End Date

2018-11-07 2018-11-07

JupyterLab-0.0.2_VernetData rwalls JupyterLab-0.0.2 14:39:17 16:56:39 Completed e
’ . ’ 2018-11-07 2018-11-07 .
shiny-0.10.2.2_analysis1 rwalls shiny-0.10.2.2 10:48:29 11:00:33 Canceled e
2018-08-22 2018-08-22 .
RAXML_Start_Tree_8.2.11_49-1 rwalls RAXML Start Tree 8.2.11 16:47:58 16:55:23 Completed e
’ 2018-08-22 2018-08-22 .
Parser_3.0.20_analysis1 rwalls Parser 3.0.20 11:26:47 13:01:39 Completed e
M cordmmn meialla iimarbar Ink 2018-08-13 2018-0918

&

Analyses

_static/desc.gif

_images/DE_apps_operation.png
@ CyVerse Discovery Environment

L lEl o))

Apps~ Workflow v Share ~ i Refresh | Search Apps & Manage Tools [Switch View
Categories <« | Operation >> Alignment >> Sequence alignment >> Pairwise sequence alignment
‘ My Apps ‘ Topic H Operation H HPC ‘ Sort By: | Name v Filter: |All v
4 [|] Alignment
4 [|] sequence alignment APPLES_conservation : LN 4 V2 Best Hit for Blat Output :
[Genome alignment '
Global alignment
2 Local al " Uk Cyverse (-‘ Roger Barthelson
ocal alignmen
S & ©) B e kA AQR)

i Multiple sequence alignment

i Pairwise sequence alignment
> [f] Read mapping

i Sequence-to-profile alignment

MUSCLE 0.0.0 Muscle-3.8.31
s OTA e
4 p

<;
i Tree-based sequence alignment <’ Alice Minotto Sheldon McKay
[l structure alignment agave (0) de Tk (19
> [f] Analysis

> [f] Annotation progressiveMauve
.- [1 Assemblv =X

s
KLY
W

504

Y
>

«

>l

_static/down-pressed.png

_static/down.png

_images/DE_blank.png
@ CyVerse Discovery Environment

_static/minus.png

_static/file.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

_images/DE_communities.png
& Apps
Apps ~ Worklow + Shae

& Refresh

Categories « i5k

[My Apps ” Topic || Operatio
[Apps under development
[Favorite Apps

[My public apps
[shared vith me
4[] My Communities
[AgBase

[Cyversestaff

I s«

]
o B
o B
o B
o B
o B

Search Apps

K Manage Tools.

combine_GAFs 1.0

GOanna 2.0

InterProScan Results Fun...

KOBAS annotate 3.0.3

KOBAS annotate and iden...

Integrated
By

Amanda Cooksey

Amanda Cooksey

Amanda Cooksey

Amanda Cooksey

Amanda Cooksey

* Kk ko
)
* Kk ko
©
1 2 2224
©
1 2 2224
©
1 2 2224
©)

[X=X-Yokx)

%, Switch View

de

de

de

de

de

_images/DE_data_upload.png
@ CyVerse Discovery Environment

Data

Upload ~+ File~ Edit~ Download~ Share~ Metadata~ ' Refresh

4 Simple Upload from Desktop

Details

4 Bulk Upload from Desktop ewing: | You may enter the path to a folder here...

A Import from URL... Name

Last Modified

Size

4 Import Genome from CoGe...
‘17_— Trasit
[] Favorites

Displaying 0 - 0 of 0

0 item(s)

_images/DE_search.png
CvVerse Discoverv Environment

~ Data: A123 U0 w
Upload ~ File~ Edit~ Download~ Share~ Metadata~ i Refresh ~, Trash~
Navigation ‘*+ Search results: 8f0|| ALL below ~ e
4 I rwalls Viewing: /iplant/hor

» 1000 Name ‘ Metadata ~ Is ~ type japonica

() A123 | 456.6¢t

I ABC = ase. Attribute Value

> @B j o Save Search

b (]B234 (5 567.0¢

I (] BCO_workshop_Feb2C |1 567.txt

I (] BioProject_BioProject_ [6780t

» (] DOItest 0 6780t

I (] Dioscorea2 '

b (] EMP_stampede1 11 789.6¢t

i (] Enders_Hirsch_maizeS 1 789.txt

i (] Files from Geeta 05-2(

I () PO association data

> (] PPPPdata
I+ (] PartitionFinder

I Jabc

& 1] analvses

oaEEE— Displaying 1 - 8 of 8 1 item(s)

_images/DE_switch_view.png
& Apps
Apps + Workflow + -~ @ Refresh
Categories «

My Apps || Topic | Operation | HPC

] Alignment
] Analysis

4[]] Annotation
4 []] Sequence annotation

[Gene funcional annotation
i ‘Genome annotation
i SNP annotation
4 [Assembly
) Seauence assembly
) Calculation
[Classification
] Clustering
] Comparison
E Conversion
E Correlation

Search Apps

Operation >> Annotation >> Sequence annotation >> SNP annotation

Name

9k Manage Tools \ ", Switch View |

STaYV|
9\1

200
NOOC

VA\H/;

N
4

Parse Blast Report

Sabarinath Subramaniam

©

snp_ase

Wwilliam Nelson

©

_images/DE_dots_menu.png
@ CyVerse Discovery Environment

€ Data: rwalls (2= —Jo)x]
Upload ~ File~ Edit~ Download v Share~ Metadata~ i’ Refresh 4| Trash~
Navigation * rwalls Details [»]
b rwalls Viewing: /iplant/home/rwalls Last Modified: ~ 2019-01-08
[ﬁ Community Data Name Last Modified Size Date Submitted: 2018-11-30
i Permissions: own
I () Shared With Me (-7 000 2019 Mar 20 12:37:29 : I Share: 1
> Trash .
- [1A123 2019 Jan 8 13:52:49 : File(s) /
Ey Favorttes % Add to favorites
1 ABC 2017 Sep 14 15:59:14
@ Share Folder Location...
]B123 2018 Nov 30 09:30:27
£ Share with Collaborators...
— 90 -
(1B234 2019 Jan 31 12:20:35 25 Edit / View Metadata
(-] BCO_workshop_Feb2014 2014 Feb 20 10:29:08 E] Goments
(] BioProject_BioProject_create_test RW 2017 Nov 14 12:49:45 [, Copy path to file / folder
(=] DOItest 2017 Sep 14 15:43:20 :
(] Dioscorea2 2017 Sep 10 20:52:11 :
(] EMP_stampedel 2015 Feb 12 17:20:25 §
[~ Enders_Hirsch_maizeSeedlingColdStres... 2018 Oct 10 14:56:12 :
() Files from Geeta 05-2014 2014 Dec 3 12:25:09

J(

Displaying 1 - 12 of 66

& Data: rwalls

_images/DE_metadata.png
Edit Metadata for 567.txt

Attribute Child Metadata

plantiD

species 'Oryza sative'

japonica

treatment

_images/Learningcenter_DkBlue.png

_images/Learningcenter_DkBlue1.png

_images/DE_word_count.png
@ CyVerse Discovery Environment

< Apps 00e00
Apps * Workflow » Share = @ Refresh | word count * Manage Tools U’j Switch View
Categories |«| Search results: 13 found for word count
©DE World Co0Re T Topic 1 0 —HPC | Sort By: | Name i @ oo v
Analysis Name:DE_Word_Count_analysis1 (4]
Analysis Name: : DNASubway Word Count :
DE_Word_Count_analysis1 1.0.0
Comments: Greg Zynda
0)
Select output folder: : DNASubway Word Count :
/iplant/home/rwalls/analyses | Browse 1.0.0

["JRetain Inputs? Enabling this flag will copy all the input files into the analysis result folder. Matthew Vaughn

* Parameters [v] agave (0) (x]

M DNASubway Word Count

Launch Analysis

_images/DataCommons_DrkBlue.png

_images/ScienceAPIs_DkBlue.png

_images/addtool_VICE_1.png
Container Image ~

Image Name*
" cyversevice/rstudio-verse ’

If the image is in Docker Hub, this field should be in username/image-name format, where username is your Docker Hub username. If it's in another registry, such as the CyVerse
registry, it should be in registry-host/image-name format.

‘— Docker Hub URL ’

https://hub.docker.com/r/cyversevice/rstudio-verse

Tag*
350 |

‘ Container Name

WARNING: Do not add a tool without an Entry Point setting if its Docker image also does not have a default "'ENTRYPOINT". If a tool like this is required, then its Network Mode setting
should be set to "none’ to contain any risky scripts run by this tool.

‘ Entrypoint

Working Directory
(/home/rstudio

‘ uiD

Container Ports ~

-

Container Port Host Port Bind to Host

Port Number* _
"BO ’ ‘ Port Number [Bind to Host L]

Cancel

_images/PoweredbyCyverse_LogoSquare.png
Powered by

&

CYVERSFE

_images/atmosphere-icon.png

_images/auto_build-2.1.png
& Docker Hub X D upendra kumar

& > C 1 | @ Secure | https://hub.docker.com/add/automated-build/github/form/upendrak/fla... i‘(‘ @ Y PODOHe

By default Automated Builds will match branch names to Docker build tags. Click here to customize behavior.

Customize Autobuild Tags

Your image will build automatically when your source repository is pushed based on the following rules. Revert to default settings

Push Type Name Dockerfile Location Docker Tag
e -0 r e s
‘ Branch ~ ‘ All branches except master ’ ‘ / ’ ‘ Same as branch ’ -

_images/atmo_request.png
Request Resources

What resources would you like to request?

E.g 4 CPUs and 8GB memory, running 4 cores for 1 week, an additional 500 AU, etc.

How will you use the additional resources?

E.g. To run a program or analysis, store larger output, etc.

CANCEL REQUEST RESOURCES

_images/atmo_resources.png
& CYVERSE

ot Dashboard '@ Projects M Images @ Help tyson_swetnam ~

238 RESOURCES DETAILS £* OPTIONS ¥

NEON Datglnstitute 2013

Request more resources

NEW o [+
= Instances
Name Status Activity IP Address Size Provider
Ubuntu 16_04 GUI XFCE o N/A 128.196.142.9 Medium3 CyVerse Cloud -
Base Active Marana

Volumes

Name Status Size Provider

_images/auto_build-7.png
@ upendradevisetty/flask-app - X upendra kumar

& C (| @ secure | https:/hub.docker.com/rjupendradevisety)flask-app/builds/ ¥*| O ae

Q Search Dashboard Explore Organizations Create upendradevisetty

PUBLIC | AUTOMATED BUILD

upendradevisetty/flask-app ¢

Repolnfo Tags Dockerfle Build Details Build Settings Collaborators Webhooks Settings.

Status Actions Tag Created Last Source Repository
Updated
© upendrak/flask-app
amintes 212
v Success 10 seconds
ago

ago

_images/auto_build-5.png
@ upendradevisetty/flask-app - X upendra kumar

& > C {) | & Secure| https://hub.docker.com/r/upendradevisetty/flask-app/ x| G 0} | e

Dashboard Explore Orgar

PUBLIC | AUTOMATED BUILD

upendradevisetty/flask-app ¢

Repolnfo Tags Dockerle BuildDetails Build Settings Collaborators Webhooks Settings

Short Description @ Docker Pull Command [
Conainer Camp flask-app docker pull upendradevisetty
Full Description @ Owner

Full description is empty for this repo. upendradevisetty

_images/auto_build-6.png
<

@ upendradevisettyffiask-app - x |

upendra kumar

c O \ @ Secure | https://hub.docker.com/r/upendradevisetty/flask-app/~/settings/automated-builds/

* G prP0Ode

BUIla Setings

When active, builds will happen automatically on pushes.

The build rules below speciy how to build your source into Docker images. The name can be a string or a regex.
The Docker Tag name may contain variables. We currently support {sourceref), which refers to the source
branch/tag name. Show more

le) Source Repository
upendrak/flask-app

Type Name Dockerfle Location Docker Tag Name
ban < et e e | .
Branch ~ ‘ All branches except master ‘ ‘ / ‘ ‘ Same as branch -

_images/biocontainers11.png
[amcooksey@rogue ~]$ sudo docker pull quay.io/biocontainers/porechop:0.2.3_seqan2.1.1--py36h2d50403_3
[sudo] password for amcooksey:

0.2.3_seqan2.1.1--py36h2d50403_3: Pulling from biocontainers/porechop

a3ed95caeb02: Already exists

bodc45cd432d: Already exists

9466b3513669: Already exists

ddd482ea7b54: Already exists

4d69f833b9d8: Already exists

e7c454e5167d: Already exists

€38092b005c0: Already exists

f879b42dfe2b: Already exists

9417599398f7: Pull complete

Digest: sha256:65f1cbe96399eff89df55169f25d2b52f46115f9d4080c388fdeb7b22dc76b30

Downloaded newer image for quay.io/biocontainers/porechop:0.2.3_seqan2.1.1--py36h2d50403_3

_images/biocontainers12.png
[amcooksey@rogue racon]$ 1s -1
total 11350140

-rw-r----- 1
-rw-r----- 1
-rw-r----- 1

amcooksey
amcooksey
amcooksey
root

amcooksey
amcooksey

iplant-everyone
iplant-everyone
iplant-everyone
root

iplant-everyone
iplant-everyone

346188054 May
23424 May
11745 May

838803132 Feb

9579801472 May

857704006 May

concat_reads.fastq
miniasm_cat_output.fasta
minimap_cat_rnd2_out.paf
porechop_out.fastq
SRR6059708. fastq
SRR6059710.fastq

_images/bind_mount.png
volume

_images/biocontainers1.png
Trimming adapters from read ends

SQK-NSK007_Y_Top:
SQK-NSK007_Y_Bottom:
SQK-MAP0O6_Y_Top_SK63:
SQK-MAP006_Y_Bottom_SK64:
PCR_1_start:

PCR_1_end:
PCR_tail_1_start:
PCR_tail_1_end:
PCR_tail_2_start:
PCR_tail_2_end:

AATGTACTTCGTTCAGTTACGTATTGCT
GCAATACGTAACTGAACGAAGT
GGTTGTTTCTGTTGGTGCTGATATTGCT
GCAATATCAGCACCAACAGAAA
ACTTGCCTGTCGCTCTATCTTC
GAAGATAGAGCGACAGGCAAGT
TTAACCTTTCTGTTGGTGCTGATATTGC
GCAATATCAGCACCAACAGAAAGGTTAA
TTAACCTACTTGCCTGTCGCTCTATCTTC
GAAGATAGAGCGACAGGCAAGTAGGTTAA

_images/biocontainers3.png
«)QUAY Explore Tour Tutorial Pricing search signin

B8 biocontainers / porechop

0 Repository Tags BES -

1-7of7 Filter Tags.
e ASTMODIFIED | SECURITYSC BXPIRES MANIFEST

0.2.3_seqan2.1.1-py36h2d50403_3 7 months ago Unsupported 65F1cbe96399

L
&

seqan2.1.1-py3sh2d50403_3 7 months ago Unsupported v Beat1e993462

seqan2.1.1-py35_2 ayearago Unsupported v 5c0403963¢69

3_seqan2.1.1-py36_2 ayearago Unsupported 3fba7crb2ds]

seqan2.1.1-py36_1 ayearago Unsupported v 1e374794cc59

seqan2.1.1-py35_1 ayearago Unsupported v 22504bb6deac

3_seqan2.1.1-0 ayearago Unsupported 4bfeabacbess

_images/biocontainers5a.png
@ BIOCONTAINERS

_images/biocontainers13.png
BIOCONDA

_images/biocontainers2.png
No adapters found - output reads are unchanged from input reads

Saving trimmed reads to file

Saved result to /working-dir/porechop_out.fastq

_images/biocontainers6.png
Loading reads
SRR6059710. fastq
543,374 reads loaded

>

Looking for known adapter sets
4,990 / 10,000 (49.9%)f

_images/homeicon9.png

_images/biocontainers8.png
Fetch Tag: ® 0.2.3_seqan2.1.1--py36h2d50403_3

Image Format:

Docker Py tag)

Docker Pull by digest)
Squashed Docker Image

kt Fetch

_images/jn_galaxy.png
& InClassLab7 Template wSolut x
C O localhost:8888/notebooks/work/InClassLab7_Template_wSolutions.ipynb
"~ Jupyter InClassLab7_Template_wSolutions (unsaved changes)

Fle Edt View Inset Cel Kemsl Wdgets Help

4+ (@ B A ¥ HAn W C » | Code DIE]

Q% @ bl

A | Logou

Not Trusted |Python3 O

y (kpc)

In the esame nlane. now weiaht the data bv the velo

1w

0

w

alona the line of

Chikwan

om

_images/intercomlogo.png

_images/journal.pcbi.1006750.g002.png
—

Integrate DMPs with the workflows of all
stakeholders in the research data ecosystem

Allow automated systems to act on behalf of
stakeholders

Make policies (also) for machines, not just for
people

Describe—for both machines and humans—the
components of the data management ecosystem

(&)

Use PIDs and controlled vocabularies

Follow a common data model for maDMPs

Make DMPs available for human and machine
consumption

Support data management evaluation and
monitoring

({e)

Make DMPs updatable, living, versioned
documents

10

Make DMPs publicly available

_images/jn_login.png
~_
_ Home

& C v @ localhost:8888/tree

Z Jupyter

Files Running Clusters
Select items to perform actions on them.
(@] ~ B

O work

upendra kumar

O

- PORe«O

Logout

~

Upload New v || &

Name 4 Last Modified 4

5 months ago

_images/homeicon4.png

_images/homeicon3.png

_images/homeicon6.png

_images/homeicon5.png

_images/homeicon8.png

_images/homeicon7.png

_images/cmd2.png

_images/cmd3.png
bin

data

tmp

_images/cmd1.png
bash-3.2§
bash-3.28 1s -F /

Applications/ systen/
Library/ users/
Network/ Volumes/

bash-3.2§

_images/cmd15.png
GNU _n

le: draf

It's not "publish or perish" any more,
it's "share and thrive".

Get Help Qg WriteOut [l Read File Q¥ Prev Page ¥ Cut Text g Cur Pos
y Exit & Justify Where Is @Y Next Page UnCut Text gl To Spell

_images/create_repo2.png
O upendrak/flask-app X upendra kumar

& C' () | @ GitHub, Inc. [US] | https://github.com/upendrak/flask-app aQ w O [] @ d e

...or push an existing repository from the command line

git remote add origin https://github.com/upendrak/flask-app.git B
git push -u origin master

_images/createapp_VICE_1.png
€= foss-rstudio-RT

[l save | Preview v [:-] Command Line Order

App Items & [«| foss-rstudio-RT - Details: Input Folder
oot Tool used: 4 Folder Selector label:
ection ~ ~ . =
foss-demo-rstudio 3.6.0 4 Input Folder
* App name:
foss-rstudio-RT Argument option:)
* App description: Enter argument option
Files/Folders O [~ i
- rstudio Default input folder : o
Multiple Input Files 2 | select a folder Browse
Add Delete
: Inputs - Do not display this item in the app.
¥]
= Username- rstudio Make this field required.
Password- rstudiol
Exclude this item if nothing is entered. &'
Input File Input Folder: |
T Tool tip text: ?)]
3 File Browse| Browse -
@ Select a folder Enter tool tip here
Input Folder Type of information contained in this folder:
(3 Folder Browse| Unspecified v
Text/Numerical Input Q|- Do not pass this argument to command line
-
X Info Text

_images/containers1.png
.
e
> 4

Kubernetes Cluster

Node

containerized app

Deployment
Master

node processes

_images/create_repo.png
&

() Create a New Repository X

upendra kumar

C 1Y @ GitHub, Inc. [US] | https://github.com/new

Owner Repository name
B upendrak ~ | flask-app

Great repository names are short and memorable. Need inspiration? How about friendly-bassoon.

Description (optional)

® Public

Anyone can see this repository. You choose who can commit.

(@) Private
You choose who can see and commit to this repository.

() Initialize this repository with a README
This will let you immediately clone the repository to your computer. Skip this step if you're importing an existing
repository.

Add .gitignore: None v Add a license: None v | ()

Create repository

Q ¥

O

B e

_images/createnewrepo.png
Repositories New

Find a repository...

_images/homeicon1.png

_images/homeicon.png

_images/homeicon2.png

_images/homeicon10.png

_images/bisque-icon.png

_images/cyverse_cmyk3.png
& CYVERSE

_images/cyverse_cmyk4.png
& CYVERSE

_images/cyverse_cmyk10.png
& CYVERSE

_images/cyverse_cmyk2.png
& CYVERSE

_images/cyverse_cmyk7.png
& CYVERSE

_images/cyverse_cmyk8.png
& CYVERSE

_images/cyverse_cmyk5.png
& CYVERSE

_images/cyverse_cmyk6.png
& CYVERSE

_images/vice-share-6.png
@ CyVerse Discovery Environment

&= Analyses

= Analyses c Refresh All v All N O\

Start Date End Date Status

E;! JupyterLab-with-sql-1.0.5_analysis1_test upendra_35 JupyterLab-with-sql-1.0.5 2019-08-27 13:07:40 - Running

_images/volumes.png
volume

_images/vice-share-7.png
@ Chrome File Edit View History Bookmarks People Window Help B L1 = ® Wed11:22 AM Alyssa Cochran Q

000 M | | 25 |O CyVer |D Home | & AcCIC. |. Slack |§ Roste | & MyDr |O docke |O dev/D |E VICE ¢ |O foss--

@ VICE- |@ cyver: |§ Home | &} QIME |C¢ Disco. _ Ju X 4+

cC (i a4ef97137.cyverse.run/lab? ﬁ’) ‘ :
: File Edit View Run Kernel Tabs Settings Help
- + * c [®] SQL_tutorial.ipynb X
™./ + X 0O [» m C Markdown v Python3 O
o Name - Last Modified
8 logs a day ago

SQL Interface to JupyterLab

[SQL_SAFl.sqlite a day ago

S P so ooy adeysge
1. Using IPython SQL Magic extension

Magic commands are a set of convenient functions in Jupyter Notebooks that are designed to solve some of the common problems in standard
data analysis. You can see all of the available magics with the help of %lsmagic .

IPython SQL magic extension makes it possible to write SQL queries directly into code cells as well as read the results straight into pandas
DataFrames (Source). This works for both the traditional notebooks as well as the modern Jupyter Labs.

Loading the SQL module
%load_ext sql

G »+» % O

The above magic command loads the ipython-sql extension. We can connect to any database which is supported by SQLAlchemy. Here we will
connect to a SQLite database. Enter the following command in the code cell

%sql sqlite://
'Connected: @None'

If you get the output as Connected: @None , this means the connection has been established.

« Creating a database

Finally, we create a demo table called EMPLOYEES to showcase the function.

%%sql
CREATE TABLE EMPLOYEE(firstname, lastname);
INSERT INTO EMPLOYEE VALUES ("Tom", "Mitchell");

0 0 & Python 3 |Idle Mode: Command & Ln1,Col1 SQL_tutorial.ipynb

_static/asc.gif

_static/ajax-loader.gif

_static/bg.gif

_images/toolintegration3.png
Verse Discovery Enyge

€&~ Manage Tools
& Apps Tools~ Share~ (2 Refresh |Al v |[search tools e 00
Apps + Workflow v Shae » G “T(,,_"_‘ Image name Tag Status nage Tools [, Switch View
Categories 4 RequestTool [d kapeeliballgown-r-package Public i
[My Apps H Topic H Operation ‘ kapeel/helitron Public
5] Apps under development X kapeel/sine latest Public SEEI
5] Favorite Apps 1 - — -
{5 My pubic apps tup bjoyce3/simprilyhtfilesetup 10 Public
[Shared with me © LncReporter garylio806/incpipereporter 10 Public
© Kalisto kapeelkallisto_wrapper latest Public
© Gffcompare kapeeligficompare latest Public
© htpath-ist-splitter discoenviht-path-list-splitter latest Public
© portaimehpc_createkeys docker.cyverse.org/portalmehpc_createkeys 3.0.0 read
© Mutiqe pvdbgO/multiqe latest Public
© lastdn docker.cyverse.org/last latest Public
o mta docker.cyverse.ora/imta vi5 Public -

_images/toolintegration18.png
porechop - fle 4 -0 file

_images/vice-share-3.png
@ CyVerse Discovery Environment

Data &= Analyses

App Type
om = Analyses c Refresh OnIy my analyses N All N/ O\
anm

Start Date End Date Status

Z JupyterLab-with-sql-1.0.5_analysis1 atcochra90 JupyterLab-with-sql-1.0.5 2019-08-28 13:08:18 = Running D Go to output folder

D View Parameters

—
1 Relaunch...

GVIBW Analysis Info

< Share with collaborators..

a Complete and Save Outputs

_images/toolintegration9.png
90e00

Search Apps

Favorite Apps

& Manage Tools

1%, Switch View

Filter: Al

[5] Apps under development
[Favorite Apps

[My public apps

[5] Shared with me

Name

Integrated by

No apps to display!

_images/cyverse_cmyk.png
& CYVERSE

_images/cyverse_cmyk1.png
& CYVERSE

_images/dc-1.png
[localhost:8888 X upendra kumar
¢« C v @ localhost:8888 ¢ | () 9 2 B e O

This Compose/Flask demo has been viewed 8 time(s).

_images/de-icon.png

_images/data_life_cycle.png

_images/datastore-icon.png

_images/docker_image.png
0 1 >

STARS PULLS pERts

_images/dnasubway-icon.png
000

SUBWAY

_images/docker.png

_images/singularity.png

_images/reproducibility-spectrum.png
Reproducibility Spectrum
Publication +

Publication

i Code

A =
Not reproducible < g Gold standard
N\

_images/toolintegration13.png
ine Order

porechop_example
Tool used:
porechop 0.23
* App name:
porechop_example

* App description;
FosS

input
Input File Label - 1:

Browse

Details: Input File Label - 1
File Selector label
Input File Label - 1

Argument option:
Ent

Default input fl:

2

fle

Do not dsplay s emin the app.
W s fleldrequied.
Excludethis Hem f nothing s entered. &

Tool tp text:
Enter oo

“Type of information contained in this fie:
Unspeciied

Do not pass s argument o comman ne &

©

)

Browse

©

_images/tmpfs.png
Filesystem

I Docker

_images/toolintegration17.png
% CyVerse Discovery Environmen

‘© porechop_example

B save 4 Prevew - (] Command Line Orer

_images/toolintegration14.png
& cyverse bisco
porechop example

Environment

Save 4 previw -] Command Line Orer

Apttems porechon. exampie =)~ oetass e
- Tootusea: Secton name:
section [porechop 023 [input
| e
[porechop_exampe L
~ App cescrpton
FilesiFolders © = Foss
Wutiple Input ies
nput B

Input File

-

Input Folder

(v owag

TextNumerical Input

Yinfo Text

Command line view

3

Input File

©
)

_images/layercake.png
PRODUCTS

DISCOVERY CONTINUOUS BISQUE
ENVIRONMENT DATA STORE ANALYSIS PLATFORM IMAGE ANALYSIS
@@ @D o =
POWERED BY CYVERSE
DATA COMMONS SCIENCE APIS CYVERSE LEARNING
& @

SERVICES

FEDERATED SINGLE CONTAINER JOB NATIONAL
STORAGE SIGN-ON VIRTUALIZATION ORCHESTRATION SCHEDULING

iRODS CAS | KEYCLOAK OPENSTACK KUBERNETES CONDOR
| OAUTH 2

HARDWARE RESOURCES

— o O o
=A SES

—)

CLOUD SYSTEMS HIGH PERFORMANCE
COMPUTERS (HPC)

DATABASES STORAGE

_images/kubernetes.png

_images/private_registry.png
@& Search - Docker Hub X upendra kumar
&< C (0 | @& Secure | https://hub.docker.com/search/?isAutomated=0&isOfficial=0&pag... Yt % [) Q) B e O

Docker Store is the new place to discover public Docker content. Check it out —

%‘ Q registry Dashboard Explore Organizations Create . upendradevisetty

Repositories (3031)

All <

-t registry 1.9K 10M+)
official STARS PULLS DETAILS

_images/portainer_demo.png
. Portainer X

upendra kumar

C Y @ localhost:9000/#/dashboard

Eporfoiner.io Home
Dashboard
Name

Dashboard

App Templates Docker version
Containers = CPU

Images Memory

Networks

Volumes

e 4 % 3 running

Engine 2 1 stopped
Containers

User management

Endpoints

Registries .I.I

Settings Volumes

riqinarin 1158

moby

17.09.0-ce

21GCB

54

Images

9

Networks

Q] B« O
@ admin

#_my account ®_log out

¢ 315GB

_images/pwd.png
&

[Play with Docker X upendra kumar

CcC 0 \ @ Secure | https://labs.play-with-docker.com i‘z\ O 9 Q] B e O

Contribute

Play with Docker

A simple, interactive and fun playground to learn Docker

_images/cyverse_globe_cmyk.png

_images/cyverse_cmyk9.png
& CYVERSE

